Problem definition	Markov Decision Process	Q-learning	DDPG	Learning architecture	Reward function	Experimental setup	Results	Conclusion

Learning fine-grained control for mapless navigation

Fred de Villiers, Willie Brink

Division of Applied Mathematics Department of Mathematical Sciences Stellenbosch University

Problem definition	Markov Decision Process	Q-learning	DDPG	Learning architecture	Reward function	Experimental setup	Results	Conclusion
•								

Problem definition

- Agent : two-wheel differential drive robot.
- Environment : flat surface in indoor enclosed space.
- Goal : find collision-free path to target.
- Agent receives continuous state information and learns continuous control policy at the actuator level.
- Agent has no access to, and does not maintain, an external map.
- An oracle provides location of target (angle and distance) relative to agent's position.

FIGURE 1 - TurtleBot 3 Burger

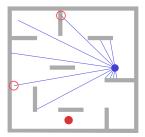


FIGURE 2 – The agent (blue circle) and target (red circle) in the simulated environment.

0 00 00 00 00 00 00 00 0	Problem definition	Markov Decision Process	Q-learning	DDPG	Learning architecture	Reward function	Experimental setup	Results	Conclusion
	0	••	0	00	0	0	0	00	0

Markov Decision Process

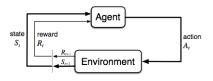


FIGURE 3 – The agent-environment interaction formulated as an MDP.

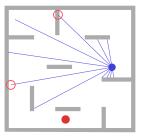


FIGURE 4 - The training environment.

- State : laser/ultrasonic rangefinder readings augmented with target angle and distance.
- Action : continuous angular velocity imparted on each wheel.
- Reward : scalar feedback balancing goals of safety and attaining target position.

Our aims :

- Design reward function to encourage local recovery and exploration.
- Eliminate dependence on platform-specific controllers to translate high-level movement commands.

Problem definition	Markov Decision Process	Q-learning	DDPG	Learning architecture	Reward function	Experimental setup	Results	Conclusion
	00							

Markov Decision Process

Agent's goal : choose A_t to maximise expected discounted return (discount factor $\gamma \in [0, 1)$)

$$G_{t} \triangleq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \dots$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \dots)$
= $R_{t+1} + \gamma G_{t+1}$ (1)

Action selected according to policy π :

$$\pi(a|s) = p(A_t = a \mid S_t = s)$$

$$a = \pi(s)$$
(2)

Value of taking action *a* in state *s* under policy π (action-value function) :

$$q_{\pi}(s, a) \triangleq \mathbb{E}_{\pi} \left[G_{t} \mid S_{t} = s, A_{t} = a \right] \\ = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s, A_{t} = a \right]$$
(3)

Problem definition	Markov Decision Process	Q-learning	DDPG	Learning architecture	Reward function	Experimental setup	Results	Conclusion
		•						

Q-learning

- Discrete state space.
- Discrete action space.

(

- Construct two-dimensional matrix of state-action pairs Q(s, a).
- Approximate true action-value function with learned action-value function.

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[\underbrace{\overbrace{R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)}^{\text{improved estimate}} - Q(S_t, A_t)}_{\text{TD error}}\right]$$
(4)

Disadvantages of Q-table :

- Combinatorial explosion
- Unvisited states during exploration
- Maximising over continuous action space not computationally feasible

Deep deterministic policy gradients (DDPG)

- Continuous state and action space.
- The critic network $Q(s, a | \theta^Q)$ estimates the action-value function.
- The actor network $\mu(s|\theta^{\mu})$ maps an action to a given state.
- The target label for training critic network :

$$y_i = r_i + \gamma Q(s_{i+1}, \mu(s_{i+1} | \theta_{\text{target}}^{\mu}) | \theta_{\text{target}}^{Q}).$$
(5)

Sample mini-batch and optimise sequence of loss functions

$$L_{i}(\theta_{i}^{Q}) = \mathbb{E}_{s,a,r,s' \sim \textit{unif}(\mathcal{M})} \left[\left(y_{i} - Q(s_{i},a_{i}|\theta_{i}^{Q}) \right)^{2} \right],$$
(6)

with gradient update

$$\nabla_{\theta_{i}}L_{i}(\theta_{i}^{Q}) = \mathbb{E}_{s,a,r,s'\sim unif(\mathcal{M})}\left[y_{i} - Q(s_{i},a_{i}|\theta_{i}^{Q})\nabla_{\theta_{i}}Q(s_{i},a_{i}|\theta_{i}^{Q})\right],$$
(7)

using stochastic gradient descent.

Two key ideas for stable results :

- Separate target networks $Q(s, a|\theta_{target}^Q)$ and $\mu(s|\theta_{target}^\mu)$.
- $\blacksquare \ \mbox{Mini-batches sampled from replay memory \mathcal{M}.}$

Problem definition	Markov Decision Process	Q-learning	DDPG	Learning architecture	Reward function	Experimental setup	Results	Conclusion
			00					

DDPG continued

The objective to update actor network :

$$J(\theta^{\mu}) = \mathbb{E}\left[Q(s, a)|_{s=s_t, a_t=\mu(s_t)}\right].$$
(8)

Deterministic policy gradient computed by taking derivative of objective function w.r.t. policy parameter :

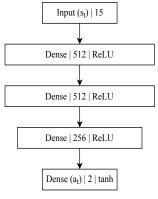
$$\nabla_{\theta^{\mu}} J(\theta^{\mu}) = \nabla_{a} Q(s, a) \nabla_{\theta^{\mu}} \mu(s|\theta^{\mu}), \tag{9}$$

and mean of policy gradients in mini-batch calculated to perform stochastic gradient ascent :

$$\nabla_{\theta^{\mu}} J(\theta^{\mu}) \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s=s_{i}}.$$
 (10)

Problem definition	Markov Decision Process	Q-learning	DDPG	Learning architecture	Reward function	Experimental setup	Results	Conclusion
0	00	0	00	•	0	0	00	0

Actor-critic network architecture



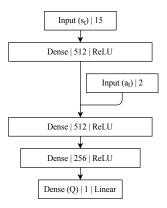


FIGURE 6 - Critic network

Problem definition	Markov Decision Process	Q-learning	DDPG	Learning architecture	Reward function	Experimental setup	Results	Conclusion
					•			

Reward function

Typical distance-based reward (DB reward) :

$$r(\mathbf{s}_{t}, \mathbf{a}_{t}) = \begin{cases} r_{\text{found}} & \text{if agent reaches target,} \\ r_{\text{crash}} & \text{if agent collides,} \\ \beta_{1}(d_{t} - d_{t+1}) & \text{otherwise.} \end{cases}$$
(11)

Our proposed distance-based reward with velocity term (DB-V reward) :

$$r(\mathbf{s}_{t}, \mathbf{a}_{t}) = \begin{cases} r_{\text{crash}} & \text{if agent collides,} \\ r_{\text{unsafe}} & \text{if min sensor} < d_{\text{safe}} \\ \beta_{1} \max\{0, (d_{t} - d_{t+1})\} + \beta_{2} v_{t} & \text{otherwise.} \end{cases}$$
(12)

Problem definition	Markov Decision Process	Q-learning	DDPG	Learning architecture	Reward function	Experimental setup	Results	Conclusion
						•		

Experimental setup

- Different agent trained for each reward function.
- Performance evaluated on four previously unseen test environments.
- Success rate recorded on 300 random start and target positions on each map.

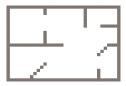


FIGURE 8 - Test map 2

FIGURE 9 - Test map 3

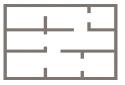


FIGURE 10 - Test map 4

Problem definition	Markov Decision Process	Q-learning	DDPG	Learning architecture	Reward function	Experimental setup	Results	Conclusion
							•0	

Results

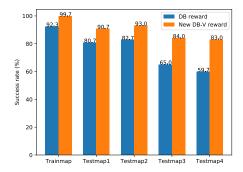


FIGURE 11 – Success rate of the agents in reaching random targets in training and previously unseen test environments.

Problem definition	Markov Decision Process	Q-learning	DDPG	Learning architecture	Reward function	Experimental setup	Results	Conclusion
							00	

Results

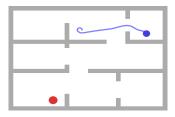
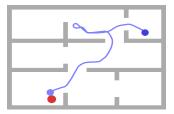


FIGURE 12 - Mapless agent : DB reward



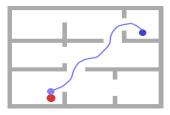


FIGURE 14 - Global planner with DB-V low-level control

Problem definition	Markov Decision Process	Q-learning	DDPG	Learning architecture	Reward function	Experimental setup	Results	Conclusion
								•

Conclusion

- Continuous control policy trained to solve challenging navigation tasks.
- New reward function improves the agent's ability to solve difficult navigation problems.
- Learned policy may form effective low-level component when coupled with global path planner.
- Technique extends naturally to dynamic environments.