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DSP group: More than speech [§ 100

http://dsp.sun.ac.za/~trn

Communication network for wildlife sensors

Optimised kinetic energy harvesting

Automatic detection and classification of coughing in audio
Virtual reality visualisation and analysis of microscopy data
Sensor network for viticulture

Interactive document visualisation for the blind



Automatic Language Processing: Then




Automatic Language Processing: Now tS 100
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Language usage in South Africa S VO




Multilingual corpus of code-switched N
South African speech ts 100
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= UN project 5100

When Old Technology Meets New:

How UN Global Pulse is Using Radio and Al to Leave No
Voice Behind




Target Languages tbS 100

Speech data

* Ugandan English (6h), Luganda (9h), Acholi (9h, |2min)
* Somali (1.6 h)

* UE was augmented with SAE data (20h)

Text data
e |09 million SAE words

* | million Luganda words (online newspaper)

* Transcriptions of the audio data

Pronunciation rules : Phonetic experts
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Acoustic modelling B 100

Acoustic models: data perturbation

* Convolutional Neural Networks (CNNs)

* Time-Delay Neural Networks (TDNNs)

* Bi-directional Long Short-Term Memory NN (BLSTMs)

Language models: data augmentation
* Recurrent Neural Networks (RNNs)
* Long Short-Term Memory Neural Networks (LSTMs)



Somali speech recognition
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ASR-free CNN-DTW keyword spotting S 10O

Aim:

* Rapid deployment of keyword spotting systems in new languages

|dea:

* Use Dynamic Time Warping (DTW) as supervision to train
Convolutional Neural Networks (CNNs) using small set of
isolated keywords

* Recordings of keywords are used as exemplars in DTW template
matching, apply to untranscribed speech

* Use DTWV scores as targets to train CNN on same unlabelled data

* Very little labelled data is required but large amount of unlabelled
data can be leveraged



Features for ASR-free keyword spotting P 10O

* Query-by-example: search “string” provided as audio

* Use Dynamic Time Warping to match query with utterances in

search collection

* Various feature representations investigated, e.g.

Multilingual bottleneck features (2 & 10 languages)
Stacked autoencoder
Correspondence autoencoder

Combinations of these



Results EQS IUU

Multilingual feature extraction combined with target language fine-
tuning can be complimentary

CCN keyword spotting does not match DTW-based system

BUT outperforms CNN classifier trained only on keywords

Main advantage of CNN: orders of magnitude faster at runtime
than DTW

Feature extractors trained on well-resourced datasets can

improve performance

Best performance: CAE trained on BNF
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Keyword spotting examples
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Topic

Analyst translation

natural-disaster,
food-security

“Elephants that are suspected to have
come from South Sudan went and at-

tacked Abalo Kodi village and de-
stroyed food [crops] about 20 acres.”

refugees.camps

“I stand with my two legs and say that
staying in the camps is very very good
[...] those days when people were not
in the camps they used to keep money
in anthills and under the beds, but af-
ter coming out of the camps they have
knowledge about banking.”

health.service-
delivery

“The road here is so bad that the am-
bulance got stuck in a ditch and could
not reach the hospital. People came
and had to collect the medicine and
carry it on foot to the hospital.”

health.malaria-
prevention

“People are using mosquito nets in the
wrong way, for example scrubbing
their bodies, washing dishes, making
fences around chicken houses, some
even turkey houses or pigsties.”




Current work bS IUU

Mali

* More volatile environment

* Difficult to install transmitters without raising suspicion
* Bambara, Fulani

e Some transcribed data, no text
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