Overview

- The South African Corpus of Multilingual Code-switched Soap Opera Speech – Ewald
- Data augmentation by synthesis of code-switched bigrams using word embeddings – Ewald
- Semi-supervised acoustic model training for five-lingual South African code-switched ASR – Astik

The South African Corpus of Multilingual Code-switched Soap Opera Speech

Data overview

- **Data collection**: Time-consuming
- **Data sparsity**: What to do?
 - Collect more data.
 - Augment existing data.

Transcription procedure

ELAN media annotation tool

Transcribed by bilingual speakers

Five tiers

Annotated example

Corpus growth

- ▶ 35 hours of segmented speech.
- English has the highest occurrence.

Speaker's language distribution – English

UNIVERSITEIT STELLENBOSCH UNIVERSITY

English speaker hardly code-switch.

Speaker's language distribution – IsiZulu

- Speakers with near even distribution between isiZulu and English.
- Third speaker shows more varied use of language.

Speaker's language distribution – Sotho-Tswana

NIVERSITEIT ELLENBOSCH JNIVERSITY

Examples of bigrams with code-switching

UNIVERSITEIT STELLENBOSCH UNIVERSITY

English	lsiZulu	lsiZulu	English
understand	-a (verb terminative)	(plural prefix) ama-	shares
English	IsiXhosa	IsiXhosa	English
sister	wakhe (his/her/its)	(plural prefix) izi-	shares
English	Setswana	Setswana	English
know	go (that)	(that) re	уои
English	Sesotho	Sesotho	English
feel	a (varb tarminativa)	(plural prefix) di-	narents

Corpus analysis

- Code-switched segments are short (250 to 750ms).
- English insertion the most frequent
- ▶ 64 to 92% of code-switched bigrams occur only once.
- Code-switched sentences:
 - 50% one switch
 - 1.86 switches per sentence.
- Spontaneous soap opera speech 1.7 times faster than prompted speech.
- English, Nguni and Sotho-Tswana language typologies differ.
 - Agglutinative
 - Conjunctive vs disjunctive orthography

Data augmentation by synthesis of code-switched bigrams using word embeddings

Data augmentation by synthesis of code-switched bigrams using word embeddings

UNIVERSITEIT STELLENBOSCH UNIVERSITY

- Use well resourced monolingual English data to synthesis bilingual code-switching examples absent in training data.
- Word embedding
 - Automatically discover semantic, syntactic relationships between words.
 - Words are mapped to a vector space.

Word embedding training

Surely those words are not pleasant words to say at any time or in any situation.

Governments worldwide are also investigating the possibility of implementing multipurpose citizen cards therefore the S. A. government had no choice but to issue a new tender conservatively valued at another one billion Rand for a smart card.

surely	sure] 0	ly those	words	pleasan ()	ıt	investig	gating	
those	58	0	604	1		19		
words	4	604	0	4		0		
pleasant	0	1	4	0		0		
:	:	÷	÷		÷.,	÷		
investigatin	ng O	19	0	0		0		
·								
surely	-0.315	0.234	0.068	0.019	0.047	0.225	-0.178	•••
those	-0.247	0.087	-0.035	-0.076	-0.172	0.124	-0.173	
words	-0.324	-0.084	0.120	-0.029	-0.035	0.322	0.011	
pleasant	-0.264	-0.097	-0.141	0.127	-0.325	0.077	0.014	
investigating	-0.183	0.179	-0.026	-0.134	-0.053	-0.159	-0.019	•••

Word embedding querying

	$isiZulu \rightarrow English$	English→isiZulu
Bigram	i- album	relationship yethu
Trigger	i-	relationship
Target	album	yethu

Word embedding querying

	isiZulu-	→English	$\operatorname{English} \rightarrow \operatorname{isiZulu}$		
Bigram	i- al	lbum	relationsh	p yethu $\mathbb{R}^{\mathbb{R}}$	
Trigger		i-	relatio	nship	
Target	all	num	vet	hu	
Query word	alt	oum	relatio	nship	
	Similarities	$Cosine \ score$	Similarities	$Cosine \ score$	
Result	song	0.874	relationships	0.833	
words	movie	0.806	friendship	0.685	
	$_{ m film}$	0.774	affair	0.608	
	soundtrack	0.771	engagement	0.578	
	series	0.736	conversation	0.574	
	footage	0.703	environment	0.573	
	gig	0.696	image	0.563	
	animated	0.689	life	0.556	
	record	0.681	lives	0.550	
	book	0.672	links	0.536	

Word embedding querying

		UNIVERSIT
	$isiZulu \rightarrow English$	English→isiZulu (BO
Bigram	i- album	relationship yethu
Trigger	i-	relationship
Target	album	vethu
	Synthesis	ed bigrams
	i- song	relationships yethu
	i- movie	friendship yethu
	i- film	affair yethu
	i- soundtrack	engagement yethu
	i- series	conversation yethu
	i- footage	environment yethu
	i- gig	image yethu
	i- animated	life yethu
	i- record	lives yethu
	i- book	links yethu

Word embedding results

	E	Ζ	E	Х	Ε	Т	E	\mathbf{S}
	: dev	tst	dev dev	tst	dev	tst	dev	tst
% unseen before augmentation	83.4	86.9	93.4	95.7	74.5	77.4	81.4	82.7
% unseen after augmentation	71.6	78.4	90.4	92.2	59.4	61.5	70.8	66.6
Factor increase in CSBG types	7	.3	7.	.9	7	.8	8	.6
% CSBGs correct: B	22.4	19.3	12.6	12.0	13.1	18.8	15.9	11.8
% CSBGs correct: S	24.4	20.0	14.6	11.4	14.7	19.9	16.0	12.8

Conclusions

- Used well-resourced monolingual text to synthesise bilingual code-switching.
- Inclusion of synthesised code-switched bigrams:
 - reduced language model perplexity with up to 31% across a language switch boundary;
 - ▶ improved code-switched bigram coverage with up to 21%.
- Improvement in code-switched bigram accuracy in 3 of 4 language pairs.

Semi-supervised acoustic model training for five-lingual South African code-switched ASR

Important ASR evaluation terms

a language model predicts

- Perplexity : Measure of how well a language model predicts the next word, given a sequence of words. Lower perplexity values = better language models.
- Word Error Rate (WER) : Performance metric for automatic speech recognition (ASR) systems:

$$WER(\%) = \frac{S + D + I}{N} \times 100$$

where N is the total number of words in the reference transcription and S, D and I are substitutions deletions & insertions. Lower WERs = more accurate recognition.

Multilingual Corpus for Code-switched South African Speech Manually segmented and transcribed training speech

UNIVERSITEIT STELLENBOSCH UNIVERSITY

Duration in hours (h) and minutes (m) of languages in the unbalanced soap opera corpus. Mono dur: Monolingual duration, CS dur: Code-switched duration

Language	Mono dur (m)	CS dur (m)	Total (h)	Total (%)	Word tokens	Lexicon entries	Word types
English	754.96	121.81	14.61	69.26	193 986	8 275	5 965
IsiZulu	92.75	57.41	2.50	11.86	24 387	11 352	7 448
IsiXhosa	65.13	23.83	1.48	7.03	22 313	6169	5 975
Sesotho	44.65	34.04	1.31	6.22	21 398	2792	2 437
Setswana	36.92	34.46	1.19	5.64	13831	1 902	1 625
Total	994.43	271.54	21.10	100	275 915	30 489	23 453

Additionally, we have 11 hours of manually segmented but **untrasncribed** soap-opera speech a total of 127 speakers (69 male and 57 female)

Dev and Test sets used to evaluate CS ASR performance

UNIVERSITEIT STELLENBOSCH UNIVERSITY

Duration (minutes) of English, isiZulu, isiXhosa, Sesotho, Setswana monolingual (mdur) and code-switched (cdur) utterances

		English-isi	Zulu (EZ)			
	emdur	zmdur	ecdur	zcdur	Total	
Dev	0.00	0.00	4.01	3.96	8.00	
Test	0.00	0.00	12.76	17.85	30.40	
		English-isiX	(hosa (EX)			
	emdur	xmdur	ecdur	xcdur	Total	
Dev	2.86	6.48	2.21	2.13	13.68	
Test	0.00	0.00	5.56	8.78	14.34	
		English-Sets	swana (ET)			
	emdur	tmdur	ecdur	tcdur	Total	
Dev	0.76	4.26	4.54	4.27	13.83	
Test	0.00	0.00	8.87	8.96	17.83	
English-Sesotho (ES)						
	emdur	smdur	ecdur	scdur	Total	
Dev	1.09	5.05	3.03	3.59	12.77	
Tect	0.00	0.00	7 90	7 74	15 54	

1464, 691, 798, & 1025 language switches observed in the EZ, EX, ES, & ET test sets, **no monolingual test data**

Supervised Training

Two main approaches:

- 1. Bi-lingual CS ASR (can recognize two languages simultaneously)
 - EZ: ManT(21.1h) + NCHLT English(>50h) + NCHLT isiZulu(>50h)
 - **EX**: ManT(21.1h) + NCHLT English(>50h) + NCHLT isiXhosa(>50h)
 - **ES**: ManT(21.1h) + NCHLT English(>50h) + NCHLT Sesotho(>50h)
 - **ET**: ManT(21.1h) + NCHLT English(>50h) + NCHLT Setswana(>50h)
- 2. Five-lingual CS ASR (can recognize five languages simultaneously)
 - **EZXST**: ManT (21.1h) + NCHLT (English + isiZulu + isiXhosa + Sesotho + Setswana) (> 250h)
- VERY little soap-opera data available to develop robust CS ASR
- Given the amount of out-of-domain monolingual NCHLT speech, the improvement is not so significant

Semi-supervised Training

Use the best possible Code-Switched ASR to transcribe new soap-opera speech to increase the amount of in-domain acoustic training data.

Automatic Transcriptions

23 290 segmented, untranscribed soap opera utterances (\pm 11 h)

- Parallel bilingual code-switch transcription (AutoT_B)
 - Each utterance decoded in parallel by each bilingual decoder
 - Output with highest confidence score provides transcription & language pair label
 - \Rightarrow 7 951 EZ, 3 796 EX, 11 415 ES and 128 ET
- ▶ Unified five-lingual code-switch transcription (AutoT_F)
 - Not restricted to bilingual output
 - Bantu-to-Bantu language code-switching also observed
 - ⇒ 3 390 isiZulu, 142 isiXhosa, 657 Setswana, 1 069 Sesotho, 3 952 English & 14 080 CS

Language Modelling: SRILM Toolkit

EZ, EX, ES, ET vocabularies contain 11 292, 8 805, 4 233, 4 957 word types, closed with respect to train, development & test sets

▶ 3-gram LMs: 4 \times bi-lingual, 1 \times 5-lingual

Туре	I M	Text source			
туре		In domain	Out-of-domain		
		in-domain	(Monolingual)		
-	EZ	EZ train text	English, isiZulu		
D: lingual	EX	EX train text	English, isiXhosa		
Di-illiguai	ES	ES train text	English, Sesotho		
	ET	ET train text	English, Setswana		
5-Lingual	EZXST	EZ, EX, ES, ET train text	English, isiZulu, isiXhosa, Sesotho, Setswana		

Text resources used for LM development

LM perplexity

MPP: monolingual perplexity

CPP: code-switch perplexity (computed **only** across a language switch)

EB: En	glish to	Bantu	switch;	BE:	Bantu	to	English	switch
--------	----------	-------	---------	-----	-------	----	---------	--------

	Dev	Test	all CPP	all MPP
		Bilingual 3-gram la	nguage model	
EZ	425.82	601.69	3 291.95	358.08
EX	352.87	788.81	4 914.45	459.04
ES	151.47	180.47	959.01	121.24
ET	213.34	224.53	70.18	160.40
	Unif	ied five-lingual 3-gra	ım language model	
EZ	599.93	1007.15	6708.18	561.80
EX	669.07	1 881.82	15 083.65	1015.93
ES	365.48	345.35	3617.44	207.84
ET	236.96	277.48	2 936.63	158.15

- * The CPP for EZ and EX are high due to agglutination
- * Perplexities of the five-lingual trigram are substantially higher than those of the the bilingual LMs
- * isiZulu and isiXhosa are **agglutinative language** ightarrow high perplexity

Acoustic Modelling: Kaldi Toolkit

- Training sets of all relevant languages combined into a single provide single provide statement.
- Conventional context-dependent GMM-HMM acoustic model used to obtain alignments
- Two different types of neural networks for acoustic modelling:
 - 1. 11 layers of Factorized Time-Delay Neural Network (TDNN-F)
 - 2. 2 Convolutional Neural Network (CNN) layers added to 11-layer TDNN-F
- Applied 3-fold data augmentation (1.1x faster, normal, 0.9x slower)
- Features: High resolution MFCCs (40-dimensional, without derivatives), pitch (3-dimensional) & i-vectors for speaker adaptation (100-dimensional)

Acoustic Model Training Pool

AutoT_B: transcriptions by **bi-lingual** automatic transcription systems **AutoT**_F: transcriptions by **five-lingual** automatic transcription system

Туре	Target Languages	Training set
Bi-lingual (4xCS)	EZ, EX, ES, ET	$\begin{array}{l} ManT \ (Baseline) \\ ManT \ + \ AutoT_B \\ ManT \ + \ AutoT_F \end{array}$
5-Lingual (1x5CS)	EZXST	$\begin{array}{l} ManT \ (Baseline) \\ ManT \ + \ AutoT_B \\ ManT \ + \ AutoT_F \end{array}$

Bi-lingual CS acoustic models adapted to target language pair after multilingual training

Bi-lingual Semi-Supervised Experiments

Mixed WERs (%) for 4 CS language pairs

UNIVERSITEIT STELLENBOSCH UNIVERSITY

Bilingual code-switched ASR												
CS Pair	TDNN-F (Baseline) ManT		$\frac{TDNN-F}{ManT+AutoT_B}$		$\frac{CNN-TDNN-F}{ManT+AutoT_B}$		CNN-TDNN-F ManT+AutoT _F					
									Dev	Test	Dev	Test
	EZ	41.4	47.5	39.5	44.9	38.2	44.0	36.3	43.2			
EX	45.7	52.3	42.4	48.7	39.7	47.3	40.4	46.7				
ES	58.6	60.2	56.3	56.2	54.0	53.6	53.8	52.9				
ET	54.1	51.0	51.7	50.4	48.5	45.6	47.0	45.5				
Overall	49.9	52.7	47.5	50.1	45.1	47.6	44.4	47.1				

- Semi-supervised TDNN-F training using AutoT_B → absolute WER reduction of 2.6% relative to baseline
- CNN-TDNN-F \rightarrow additional 2.5% reduction
- Acoustic models retrained with AutoT_F transcriptions \rightarrow best performance

5-lingual Semi-Supervised Experiments

Mixed WERs (%) for 4 CS language pairs

			STELLE? UNIVE					
CS Pair	TDNN-F (Baseline) ManT		TDNN-F ManT+AutoT _F		CNN-TDNN-F ManT+AutoT _F		CNN-TDNN-F ManT+AutoT _B	
	Dev	Test	Dev	Test	Dev	Test	Dev	Test
EZ	39.7	50.3	36.6	46.2	35.8	44.8	37.3	47.3
EX	44.5	63.6	43.6	59.9	42.2	60.1	42.3	59.2
ES	54.8	50.4	53.5	48.9	53.9	48.8	51.45	48.2
ET	48.3	46.0	47.4	43.3	45.1	42.9	51.2	49.1
Overall	46.8	52.6	45.3	49.6	44.2	49.2	45.5	50.9

- Five-lingual recognition is more difficult since it allows more freedom in terms of permissible language switches
- Semi-supervised TDNN-F training using AutoT_F → absolute WER improvement of 3% relative to baseline
- ► CNN-TDNN-F acoustic model trained with AutoT_B transcription → no significant improvement
- Deteriorated performance for EX and EZ due to higher corresponding perplexities values

Summary & Conclusions

- We introduced semi-supervised acoustic model training
- Aim: improve the performance of under-resourced code-switched ASR for four South African language pairs
- 11 hours of manually segmented but untranscribed soap opera speech containing code-switching was processed Bi-lingual & 5-lingual automatic transcription systems
- Results indicate that both approaches were able to reduce overall WER substantially
- 5-lingual system exhibited a bias towards English
- Despite the added confuseability inherent in decoding five languages, the 5-lingual system showed good performance

Thanks for your attention! Any questions?