Multi-Agent Path Finding with Reinforcement Learning

James Ellis Supervisor: Prof. HA Engelbrecht 13 November 2020

- Applications in robot navigation, traffic control and gaming.
- Multiple agents navigate to their goal locations.
 - Avoid collisions.
 - Minimise the sum of all agent path lenghts:

Example [1]:

[1]: T. Standley, "Finding optimal solutions to cooperative pathfinding problems,"
Proceedings of the National Conference on Artificial Intelligence, vol. 1, pp. 173– 178, 2010.

- Reasons for using reinforcement learing:
 - 1. Centralised MAPF planners scale poorly to large environments with many agents.

- Reasons for using reinforcement learing:
 - 2. Real time execution.

 Centralised planners not suitable for scenarios which require replanning.

3. Reinforcement learning does not require a model of the environment.

Flatland Challenge • Example: Multi Agent Reinforcement Learning on Trains

From: https://www.aicrowd.com/challenges/flatland-challenge

Environmnet

Multi-Agent Reinforcement Learning

- Single-Agent RL
 - Only one learner
- Multi-Agent RL (MARL)
 - Many learners
 - Interacting agents (environment dynamics depends on all agent actions).
 - Agent Autonomy

Multi-Agent Reinforcement Learning

MARL Challenges

- Scalability: Exponential increase in state-action space with increasing number of agents.
- Non-Stationarity: Best action depends on other agent actions. All agents are learning and changing their policies.
- Credit assignment problem

From: https://bair.berkeley.edu/blog/2018/12/12/rllib/

Multi-Agent Reinforcement Learning

MARL Challenges (...continued)

- Coordination problem

Approach 1

- Train RL agents using a purely reinforcement learning approach.
 - No handcrafted heuristics or supervision.
 - Algorithms selected:
- Independent learners
 - Proximal Policy Optimisation (PPO)
- Centralised learning with decentralised execution
 - Actor-Attention-Critic for Multi-Agent Reinforcement Learning (MAAC)
- Differentiable communication
 - Individualised Controlled Continuous Communication Model (IC3Net)

Results

Comparisons on fully observable 7x7 gridworlds.

- IC3Net: Did not learn to communicate in the MAPF environment.
- **MAAC:** Surprisingly, MAAC did not perform well on global rewards:
 - Agents obtain a shared global reward when **all** agents reach their goals:

Algorithm	Episode Length	Agent Collisions	Obstacle Collisions	Per Agent Success Rate	Task Success Rate
PPO	$18.58{\pm}2.2$	$0.55 {\pm} 0.5$	$1.14{\pm}0.6$	$0.78{\pm}0.1$	$0.48{\pm}0.1$
MAAC	26.0 ± 0.0	$0.08{\pm}0.4$	$0.57{\pm}0.9$	$0.01 {\pm} 0.0$	$0.0 {\pm} 0.0$

- **PPO:** Using curriculum learning policies can be trained to have performance comparable to MAAC.
- RL in partially observable environments struggle to scale to larger environment sizes

Approach 2

- In [2], agents are trained using both RL and imitation learning. They achieve very good results by using several heuristics during training, as well as imitation learning.
- Approach used in [2]:
 - For each episode, 50% change of training with either RL or behaviour cloning (immitation learning).
 - A blocking penalty is introduced to discourage agents from blocking one another.
 - Invalid action are removed during training.
 - Environment sizes and obstacle densities are sampled so that agents are trained on difficult environments more often.

[2]: G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. K. S. Kumar, S. Koenig, and H. Choset, "PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning," [Online]. Available: http://arxiv.org/abs/1809.03531

- Would like to investigate the effect of these heuristics on performance.
 - Ablation study on PRIMAL.
 - How does behaviour cloning perform on its own?
 - Compare with baseline ODM*.

Comparison with ODM*

- ODM* limited to 5 minutes execution time.
- Our implementation of PRIMAL did not include blocking penalties.

32x32 Environment Size

Approach 2

Conclusion

- In larger environmnets with many agents:
 - Deep learning / RL approaches outperform ODM*.
- In smaller environments:
 - ODM* outperforms deep learning / RL approaches.
- Imitation learning becomes necessary when scaling to larger environmnet sizes.
- Using a MARL approach (MAAC) has no benefit over a single agent approach (PPO) for this environment.
- The MAPF environment is not suitable for learning communication with RL.

Thank You • Dankie • Enkosi

