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« Applications in robot navigation, traffic control and gaming.

« Multiple agents navigate to their goal locations.
- Avoid collisions.

- Minimise the sum of all agent path lenghts:

Example [1]:

[1]: T. Standley, “Finding optimal solutions to
cooperative pathfinding problems,”

Proceedings of the National Conference on Artificial
Intelligence, vol. 1, pp. 173-

178, 2010.
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 Reasons for using reinforcement learing:

- 1. Centralised MAPF planners scale poorly to
large environments with many agents.
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 Reasons for using reinforcement learing:

2. Real time execution.

- Centralised planners not suitable
for scenarios which require re-
planning.

3. Reinforcement learning does not
require a model of the environment.
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Flatland Challenge
« Example:  Multi Agent Reinforcement Learning on Trains
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From: https://www. alcrowd com/challenges/ﬂatland challenge
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Learning it
« Single-Agent RL
- Only one learner
* Multi-Agent RL (MARL)

- Many learners

- Interacting agents (environment dynamics depends on
all agent actions).

- Agent Autonomy

1918-2018
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MARL Challenges

- Scalability: Exponential increase in state-action space
with increasing number of agents.

1918-2018

- Non-Stationarity: Best action depends on other agent
actions. All agents are learning and changing their
policies.

- Credit assignment problem

From: https://bair.berkeley.edu/blog/2018/12/12/rllib/
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Learning

MARL Challenges (...continued)
- Coordination problem
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Train RL agents using a purely reinforcement learning approach.

- No handcrafted heuristics or supervision.

Algorithms selected:

Independent learners

- Proximal Policy Optimisation (PPO)

Centralised learning with decentralised execution

- Actor-Attention-Critic for Multi-Agent Reinforcement Learning
(MAACQ)

Differentiable communication

- Individualised Controlled Continuous Communication Model
(IC3Net)
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Comparisons on fully observable 7x7 gridworlds.

Results

* IC3Net: Did not learn to communicate in the MAPF environment.

« MAAC: Surprisingly, MAAC did not perform well on global

rewards:
- Agents obtain a shared global reward when all agents reach their goals:
. Episode Agent Obstacle Per Agent | Task
Algorithm . . . . Success Success
Length Collisions | Collisions
Rate Rate
PPO 18.584+2.2 | 0.55+0.5 1.1440.6 0.78+0.1 0.48+0.1
MAAC 26.0+0.0 0.08+0.4 | 0.57£0.9 | 0.01£0.0 0.040.0

 PPO: Using curriculum learning policies can be trained to have
performance comparable to MAAC.

 RL in partially observable environments struggle to scale to larger
environment sizes
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* In[2], agents are trained using both RL and imitation
learning. They achieve very good results by using several
heuristics during training, as well as imitation learning.

« Approach used in [2]:

For each episode, 50% change of training with either RL or behaviour
cloning (immitation learning).

A blocking penalty is introduced to discourage agents from blocking one
another.

Invalid action are removed during training.

Environment sizes and obstacle densities are sampled so that agents
are trained on difficult environments more often.

[2]: G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. K. S. Kumar, S. Koenig, and
H. Choset, “PRIMAL.: Pathfinding via Reinforcement and Imitation Multi-Agent
Learning,” [Online]. Available: http://arxiv.org/abs/1809.03531
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 Would like to investigate the effect of these
heuristics on performance.
- Ablation study on PRIMAL.
- How does behaviour cloning perform on its own?

- Compare with baseline ODM*,
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ODM* limited to 5 minutes execution time.

Our implementation of PRIMAL did not include blocking

penalties.
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In larger environmnets with many agents:
- Deep learning / RL approaches outperform ODM¥*,

* In smaller environments:
- ODM* outperforms deep learning / RL approaches.

* |Imitation learning becomes necessary when scaling to
larger environmnet sizes.

* Using a MARL approach (MAAC) has no benefit over a
single agent approach (PPO) for this environment.

« The MAPF environment is not suitable for learning
communication with RL.
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