Solving Sparse-reward
Problems in Partially
Observable 3D Environments
using Reinforcement Learning

Cobus Louw

Supervisor: Prof HA Engelbrecht

Co-supervisor: Mr JC Schoeman



Mobile Robots

» Mobile robots are widely used
» In areas that are difficult to access

» In dangerous situations

» Usually controlled by a human operator

» What happens when RF signals cannot reach
the robot?

» For example: a collapsed mine where
assistance is needed

» The robot must be capable of making the
decisions of the human controller




Problem Statement

> Injured miner.needs Move Forward 0,5 units
resources/assistance
» Autonomous robot has to deliver Move Back 0,5 units

supplies
Turn left -9°
» First-person RGB observation

(76x44x3 ) Turn right 9°

» MiniWorld - 3D simulation

environment in Python Pick up / drop

» Environment action space No operation




Simulation Environment

First aid kit Obstacle

» Find and deliver first aid kit to miner

.

-
-

L 4

e 4
>

Injured miner




Possible Solutions

» Behavioural Cloning
» Clone behaviour of expert
» For example using supervised learning
» Dependent on quality of data-set
» Rarely becomes as good as expert
» Reinforcement Learning
» No data-set required
» Learn by trial and error

» Can become better than expert demonstrator




Deep Q-learning (by DeepMind)

» Combines Q-learning with deep neural
networks

» Difficult to combine reinforcement learning
with deep learning

» Correlated data
» Moving targets

» Two important modifications to stabilise
training

» Experience Replay

» Frozen Q-targets




Partially Observability

» First-person camera
» Partially observable observations
» Function approximation helps according to Sutton and Barto
» Augment observation
» Frame-stacking

» Action memory
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Result
Partially Observability

Mean Episode Return over Network Update Steps
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first aid kit
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first aid kit

obstacle
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Sparse Reward Problem

» Agent only receives reward when full task is completed

» Problem
» A newly initialised agent is clueless

» Epsilon-greedy exploration / random exploration
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Sparse Reward Problem

» Took roughly a million interactions to receive single reward

» Possible solutions:

» Reward the agent more frequently
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Sparse Reward Problem

» Took roughly a million interactions to receive single reward
» Possible solutions:

» Reward the agent more frequently

» Use demonstration data to pretrain agent

» Generate more data
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Prioritised Experience Replay

Important transitions are still in the minority
Sampling at random will rarely sample them
Need to prioritise important transitions

Prioritised experience replay
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Priorities are based on prediction errors




Prioritised Sampling
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Delayed Rewards and Credit assignment

» Multiple sub-tasks without credit
» Eligibility traces
» Cannot be combined with deep Q-learning

» N-step update




Problem one
Ablation Result

Mean Episode Return over Network Update Steps
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Problem two

+ reward obstacle

@first aid kit



Possible Solutions

» Better exploration required

» Curriculum learning




Curriculum
learning: phase 1
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Curriculum
learning: phase 2 @obstacle
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Curriculum
learning: phase 3 @obstacle
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learning: phase 4 ®obstacle

@)bstacle

agent +

®first aid kit




Curriculum
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Possible Solutions

» Better exploration required

» Curriculum learning
» Tedious to implement

» Environment initialisation
» Randomise the rooms entities are placed (Domain randomisation)
» Allows agent to learn simpler versions of the problem

» Hopefully learns also to solve the more complex problem
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Result
Problem two
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Scalable to Larger Environments?

» How well does the algorithm scale to larger environments?
» Domain randomisation

» Curriculum learning combined with domain randomisation




Four Rooms?




Five Rooms?




100 Rooms?




More Rooms

Result
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More Rooms
Result

Mean Episode Return over Network Update Steps
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More Rooms

Result

Mean Episode Return

Mean Episode Return over Network Update Steps
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More Rooms

Result
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More Rooms

Result

Mean Episode Return
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Conclusion
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Important modifications to include for sparse reward problems
» Distributed data generation
» Prioritised experience replay
» N-step update
Exploration improvements
» Curriculum learning
» Domain randomisation
Partially observability
» Frame-stacking
» Action memory
Future work
» Better exploration strategies (other than e-greedy)

» Longer memory (LSTMs)




Applications

General algorithm

Only requires image observation and a
reward signal




