Solving Sparse-reward Problems in Partially Observable 3D Environments using Reinforcement Learning

Cobus Louw

Supervisor: Prof HA Engelbrecht

Co-supervisor: Mr JC Schoeman

Mobile Robots

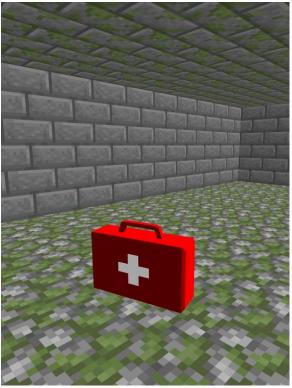
- Mobile robots are widely used
 - In areas that are difficult to access
 - In dangerous situations
- Usually controlled by a human operator
- What happens when RF signals cannot reach the robot?
- For example: a collapsed mine where assistance is needed
- The robot must be capable of making the decisions of the human controller

Problem Statement

- Collapsed mine
- Injured miner needs resources/assistance
- Autonomous robot has to deliver supplies
- First-person RGB observation (76x44x3)
- MiniWorld 3D simulation environment in Python
- Environment action space

Action space	Unit
Move Forward	0,5 units
Move Back	0,5 units
Turn left	-9°
Turn right	9°
Pick up / drop	-
No operation	-

Simulation Environment



First aid kit

Obstacle

Injured miner

Possible Solutions

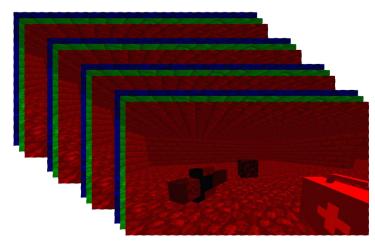
- Behavioural Cloning
 - Clone behaviour of expert
 - ► For example using supervised learning
 - Dependent on quality of data-set
 - Rarely becomes as good as expert
- Reinforcement Learning
 - ► No data-set required
 - ► Learn by trial and error
 - Can become better than expert demonstrator

Deep Q-learning (by DeepMind)

- Combines Q-learning with deep neural networks
- Difficult to combine reinforcement learning with deep learning
 - Correlated data
 - Moving targets
- Two important modifications to stabilise training
 - Experience Replay
 - Frozen Q-targets

Partially Observability

- ► First-person camera
- Partially observable observations
- Function approximation helps according to Sutton and Barto
- Augment observation
 - ► Frame-stacking
 - Action memory

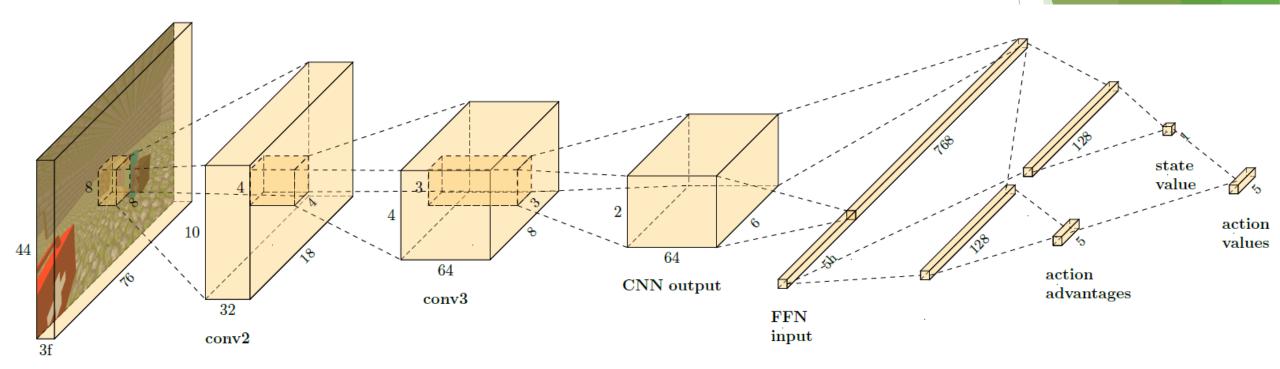


 $A_{t-1} | A_{t-2} | A_{t-3} | \cdots | A_{t-h}$

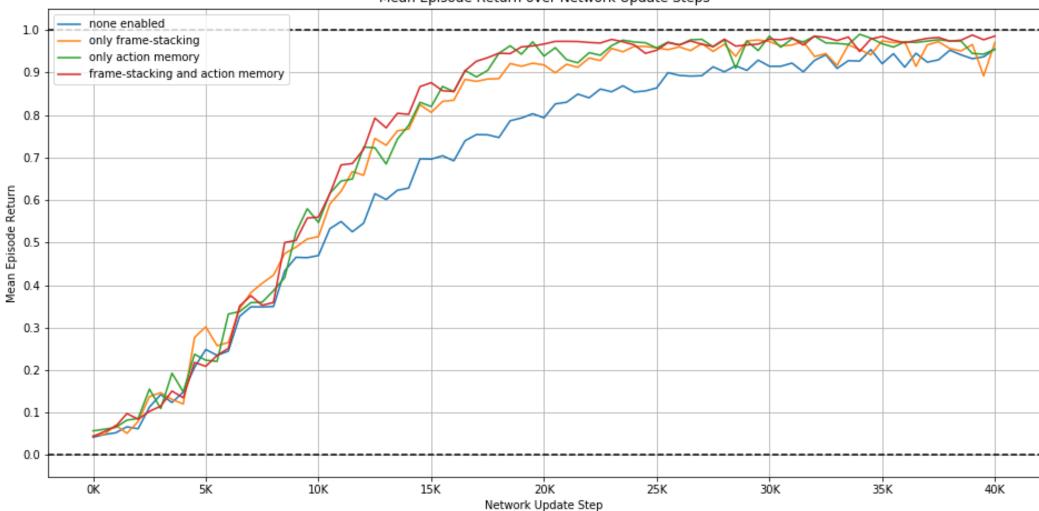
Frame-stacking

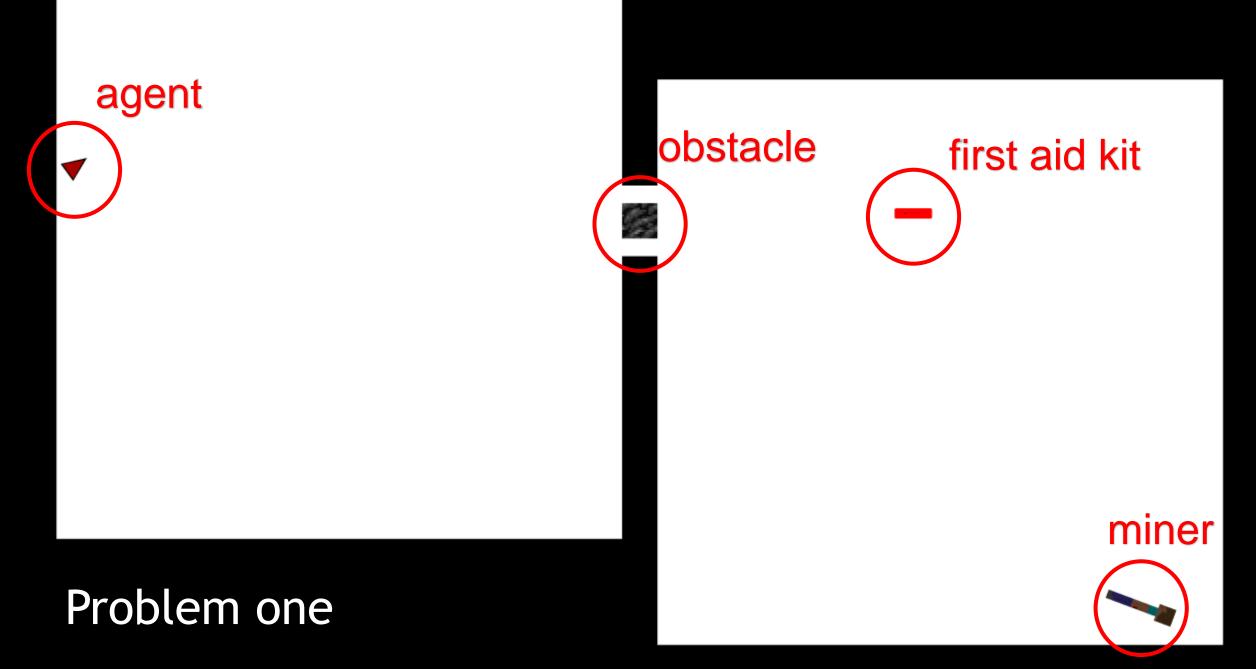
Action memory

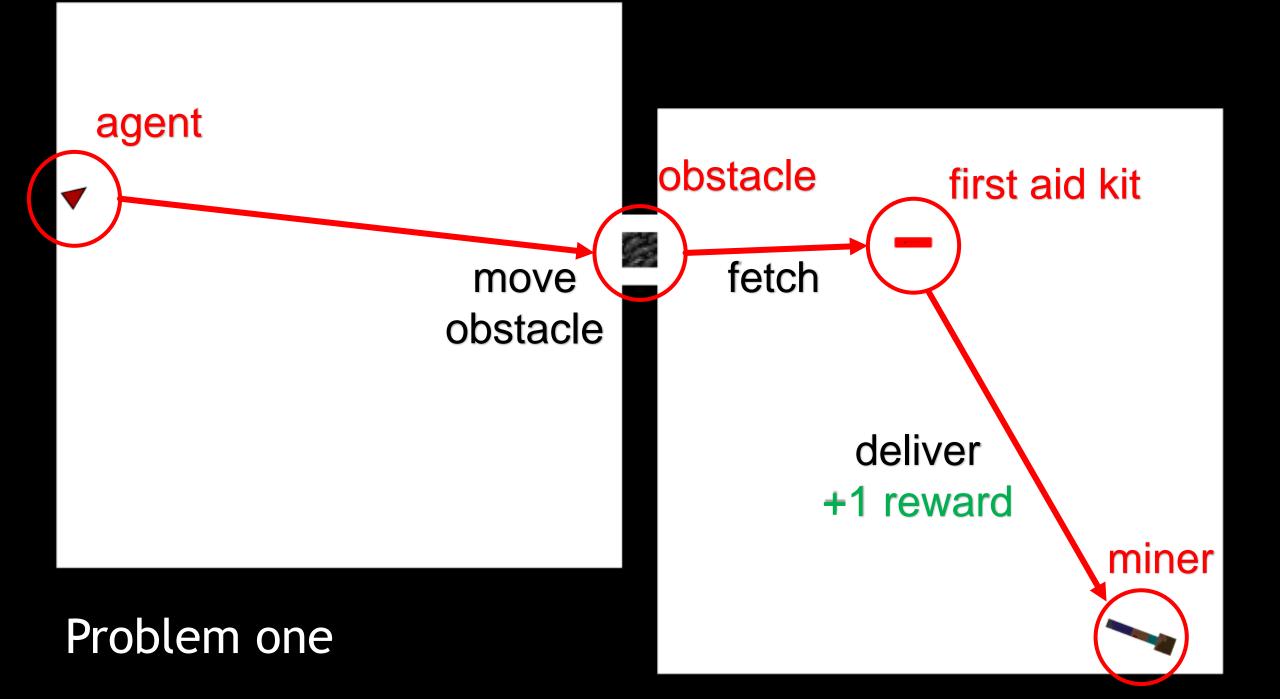
Deep Neural Network Architecture (Dueling)



Result Partially Observability







Sparse Reward Problem

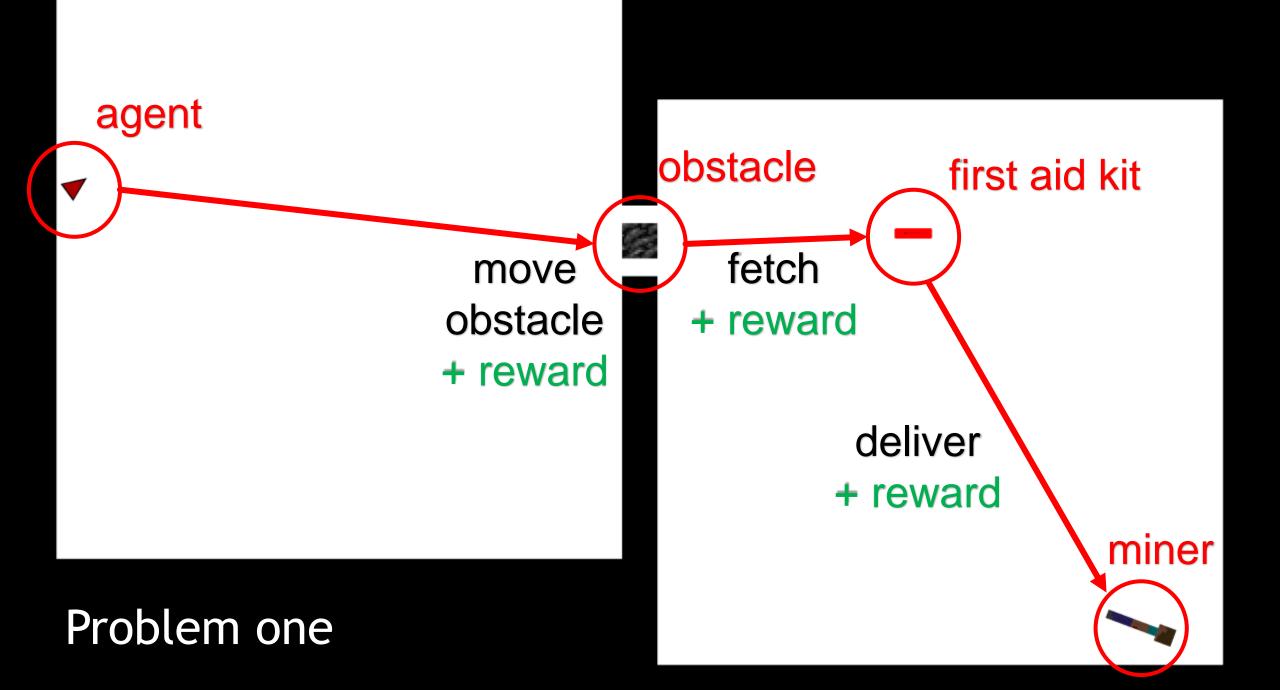
Agent only receives reward when full task is completed

Problem

- A newly initialised agent is clueless
- Epsilon-greedy exploration / random exploration

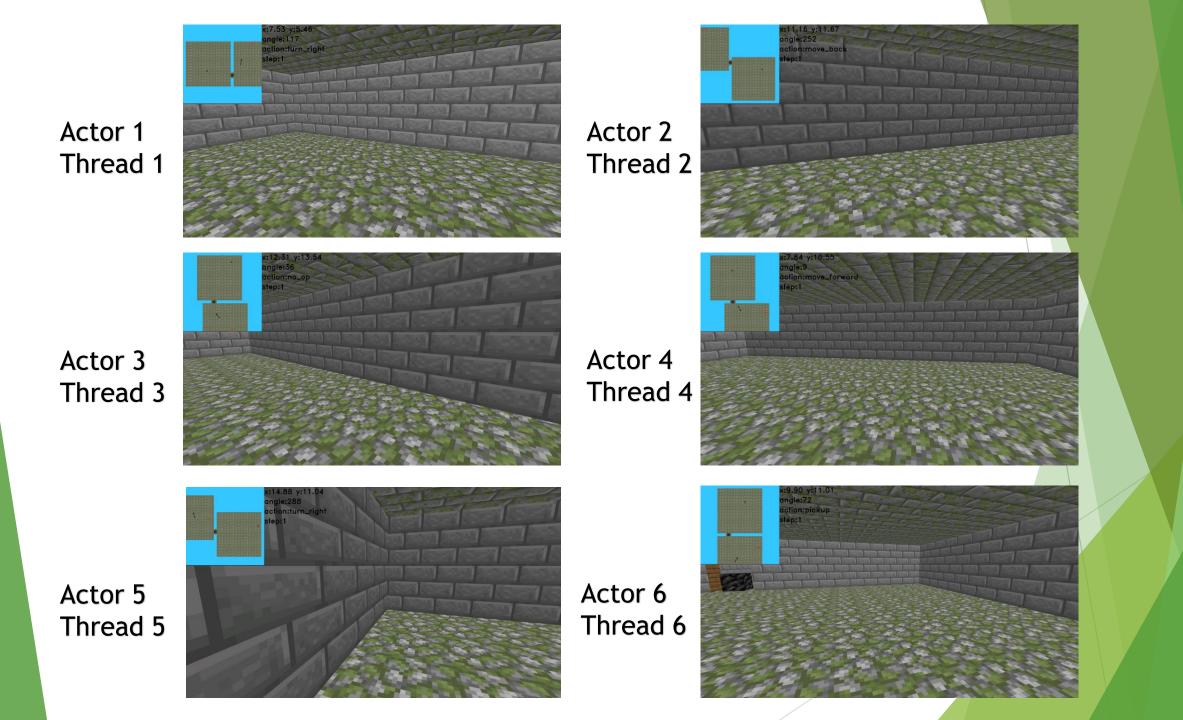
Sparse Reward Problem

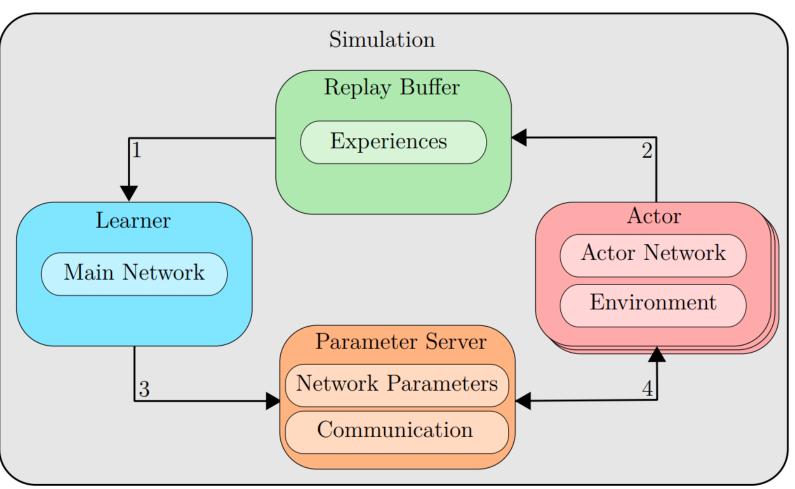
- ► Took roughly a million interactions to receive single reward
- Possible solutions:
 - Reward the agent more frequently



Sparse Reward Problem

- Took roughly a million interactions to receive single reward
- Possible solutions:
 - Reward the agent more frequently
 - Use demonstration data to pretrain agent
 - ► Generate more data

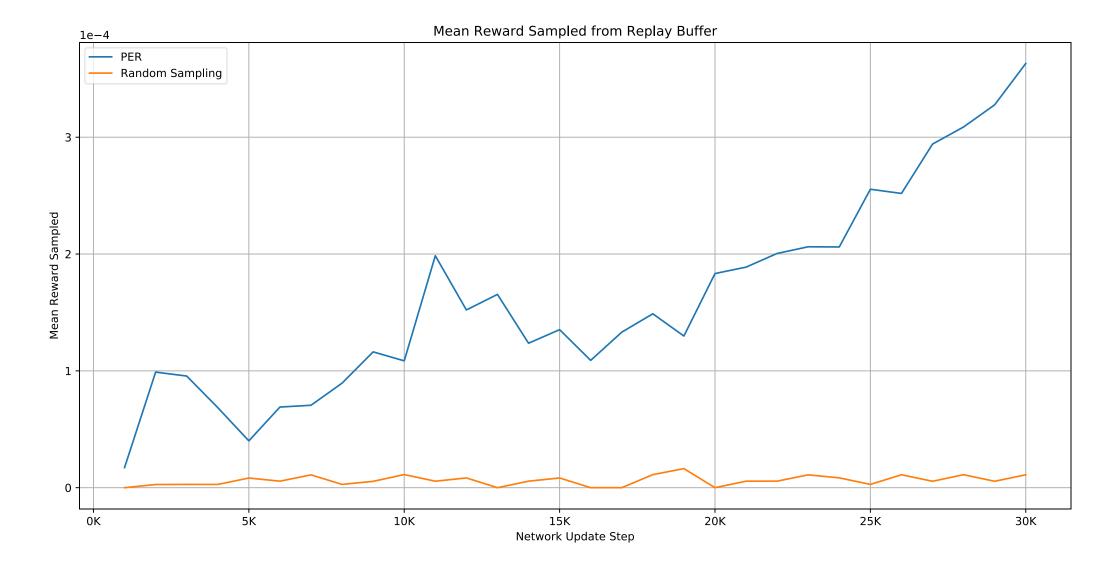




Prioritised Experience Replay

- Important transitions are still in the minority
- Sampling at random will rarely sample them
- Need to prioritise important transitions
- Prioritised experience replay
- Priorities are based on prediction errors

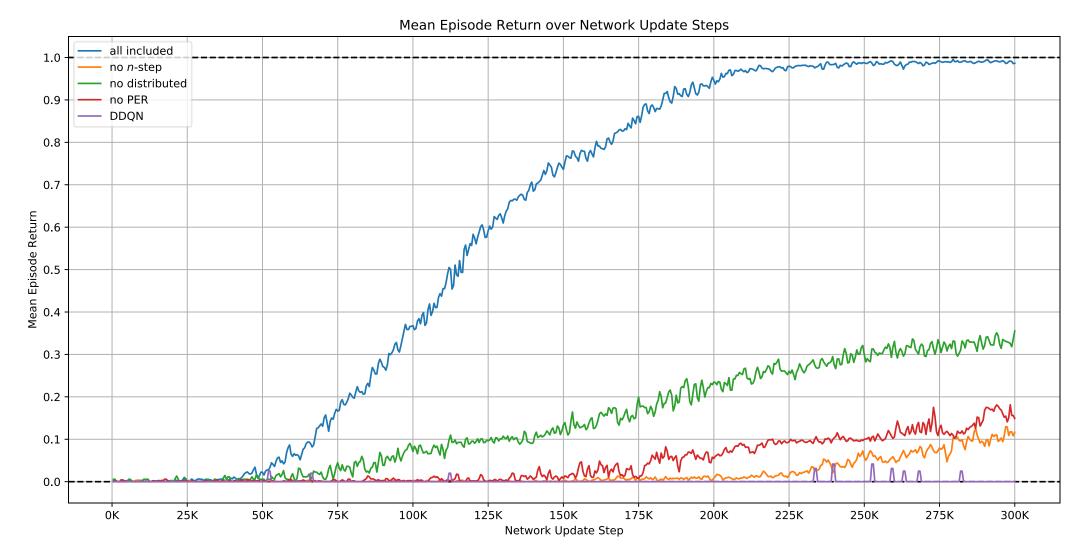
Prioritised Sampling

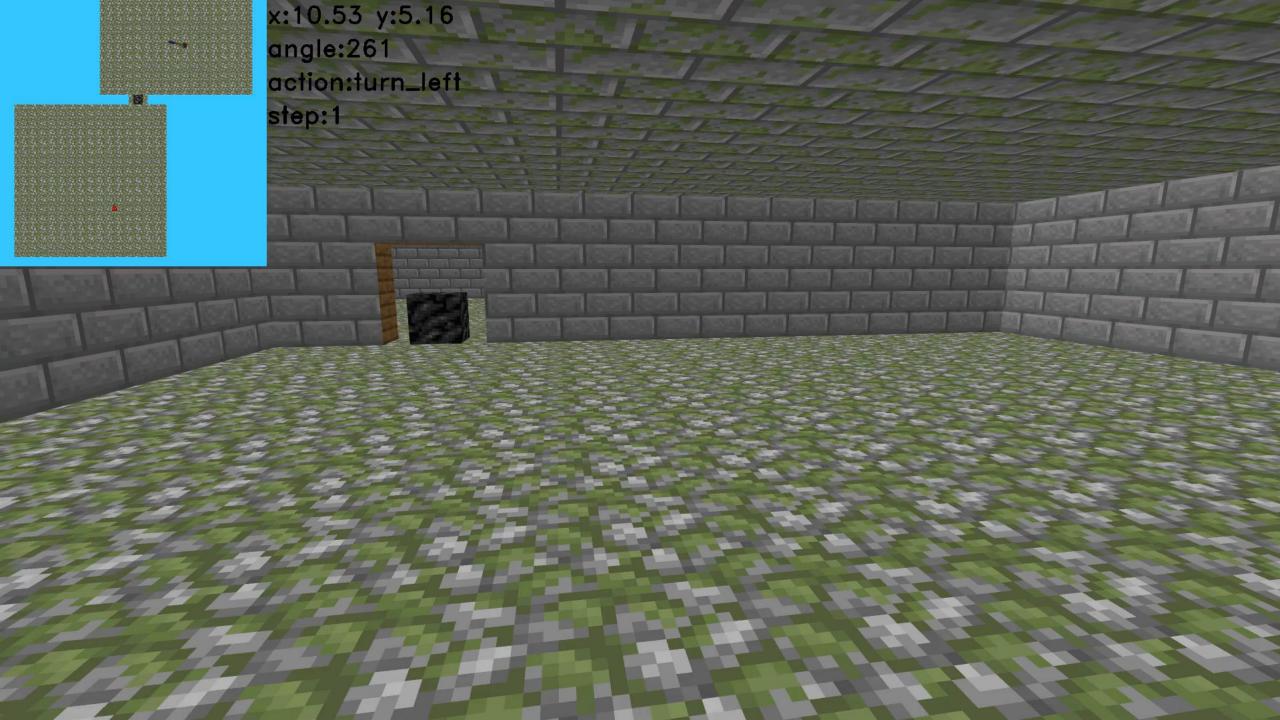


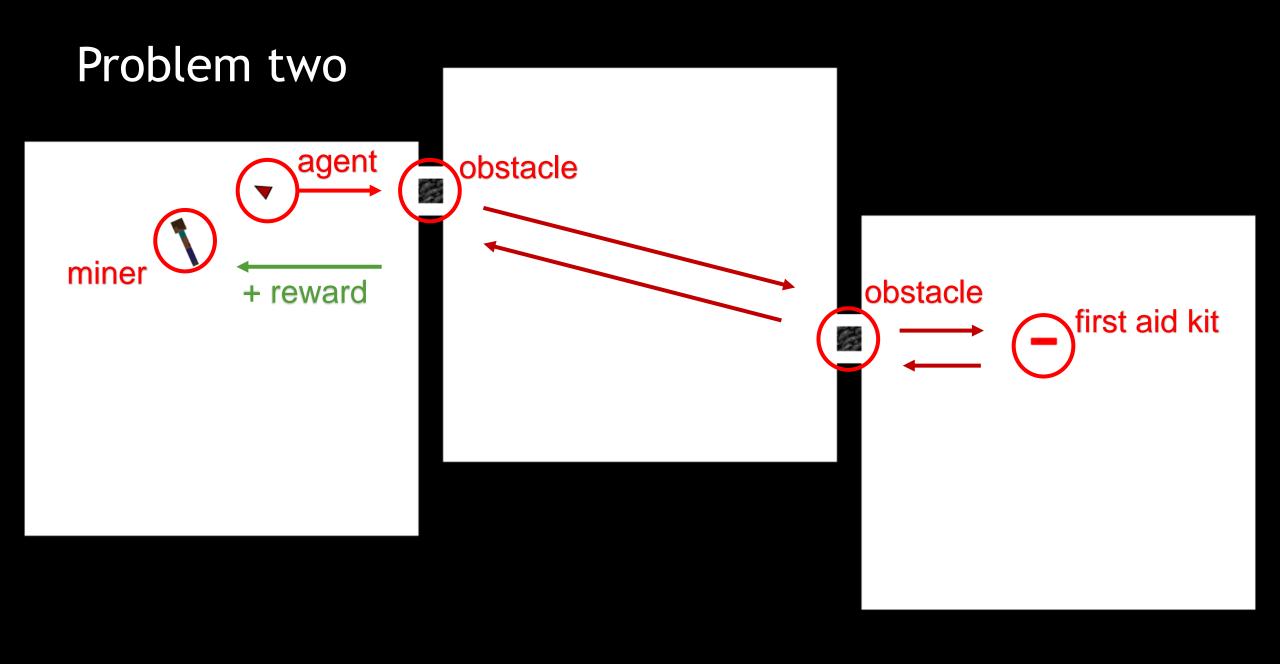
Delayed Rewards and Credit assignment

- Multiple sub-tasks without credit
- Eligibility traces
 - Cannot be combined with deep Q-learning
- N-step update

Problem one Ablation Result



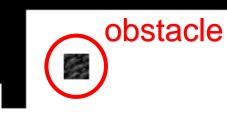


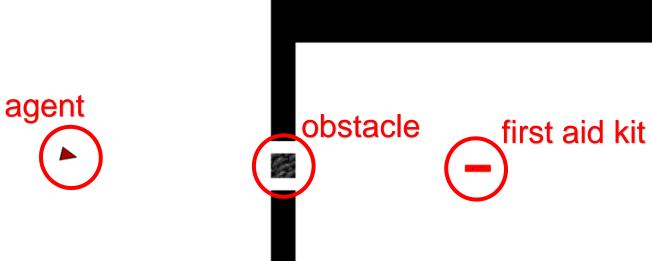


Possible Solutions

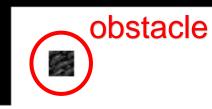
- Better exploration required
- Curriculum learning

Curriculum learning: phase 2

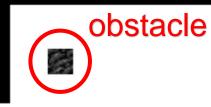


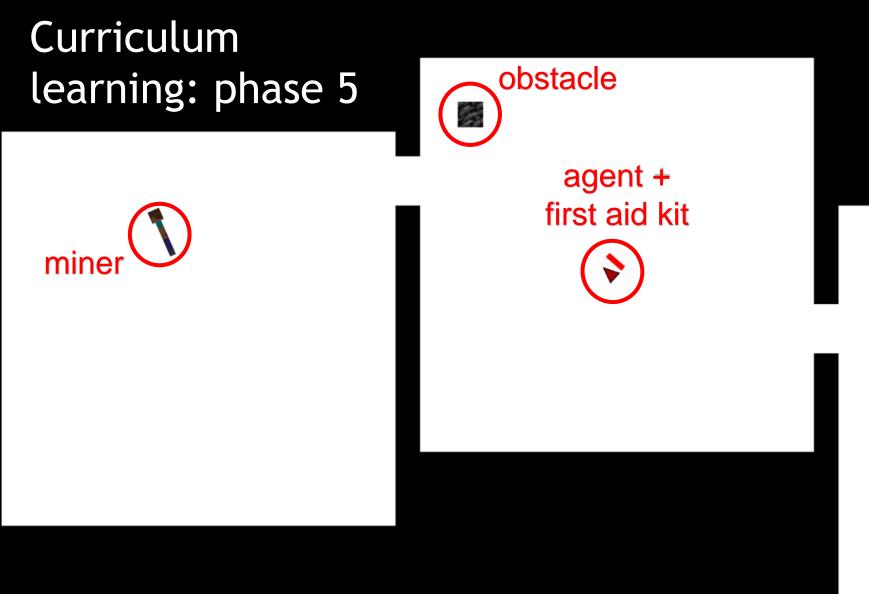


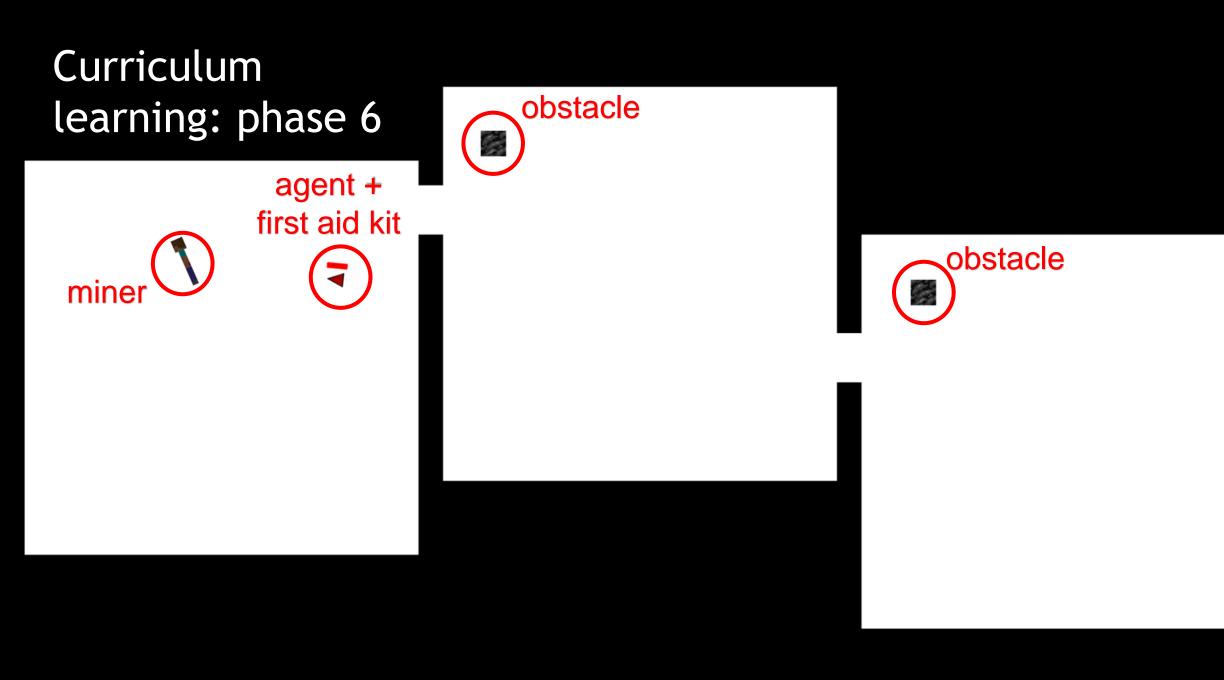
Curriculum learning: phase 3



Curriculum learning: phase 4



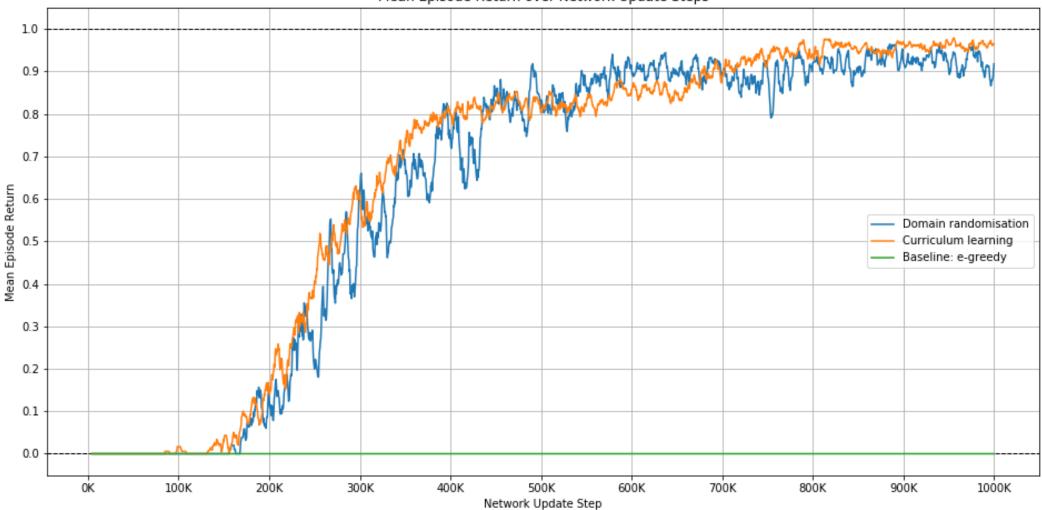




Possible Solutions

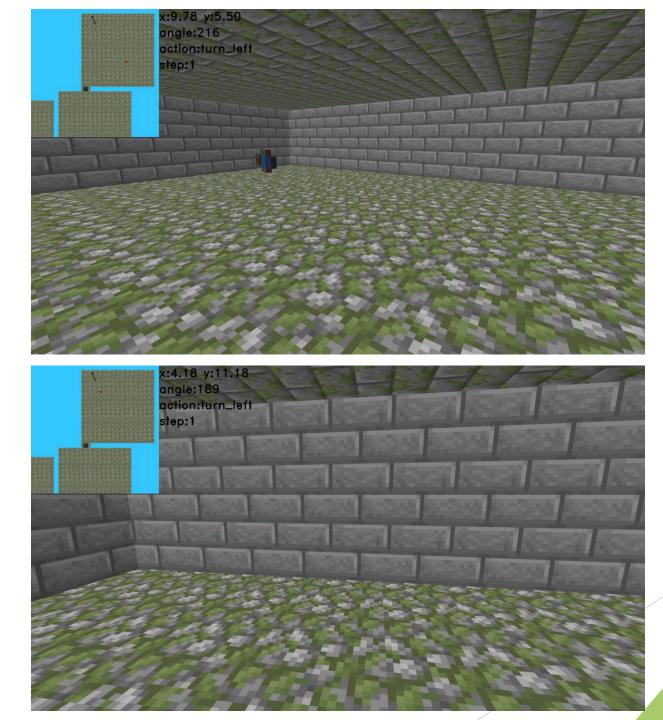
- Better exploration required
- Curriculum learning
 - ► Tedious to implement
- Environment initialisation
 - Randomise the rooms entities are placed (Domain randomisation)
 - Allows agent to learn simpler versions of the problem
 - ► Hopefully learns also to solve the more complex problem

Result Problem two



Result Problem two

Curriculum learning

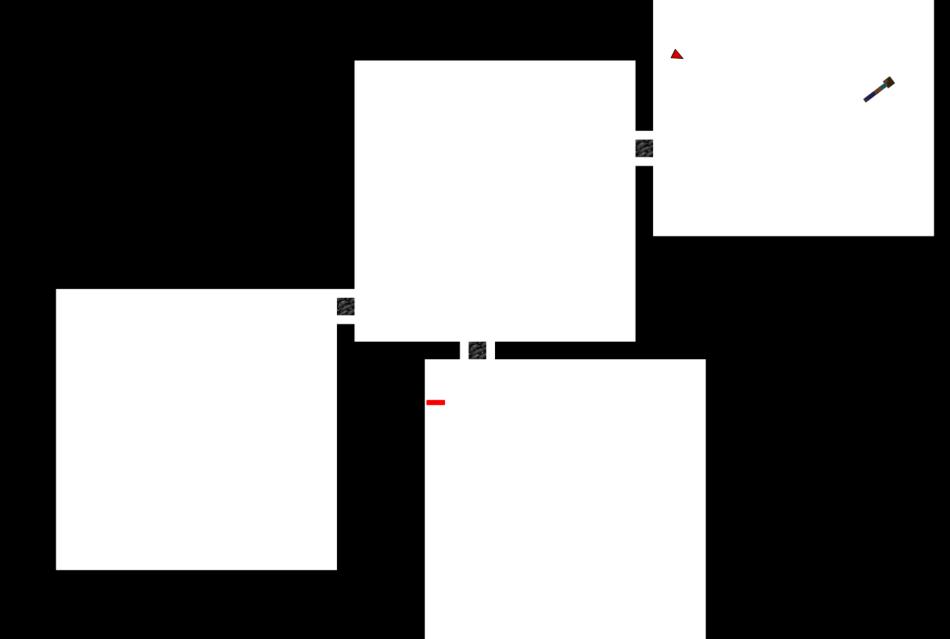


Domain randomisation

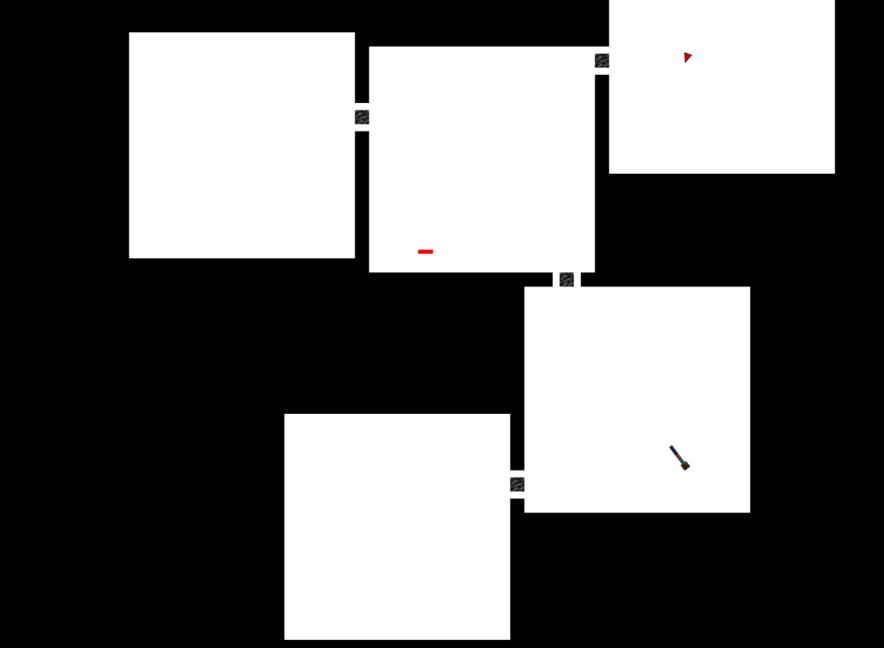
Scalable to Larger Environments?

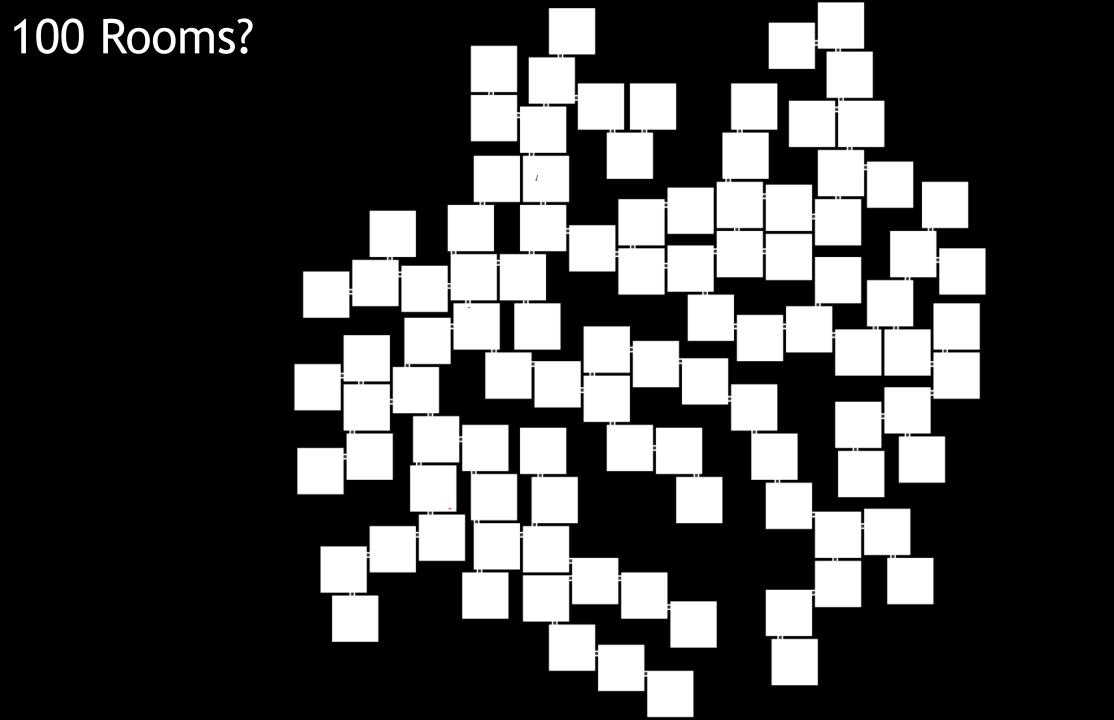
- ► How well does the algorithm scale to larger environments?
- Domain randomisation
- Curriculum learning combined with domain randomisation

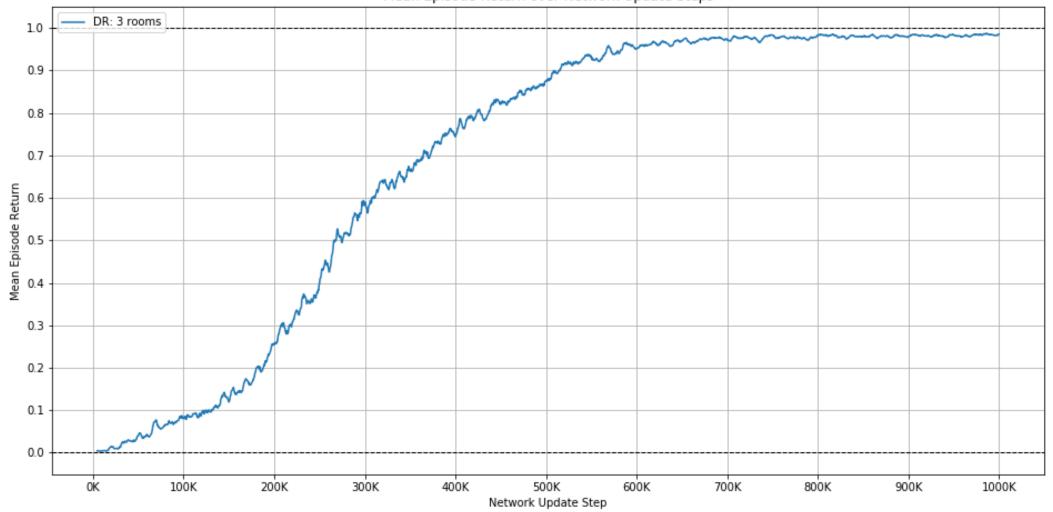
Four Rooms?

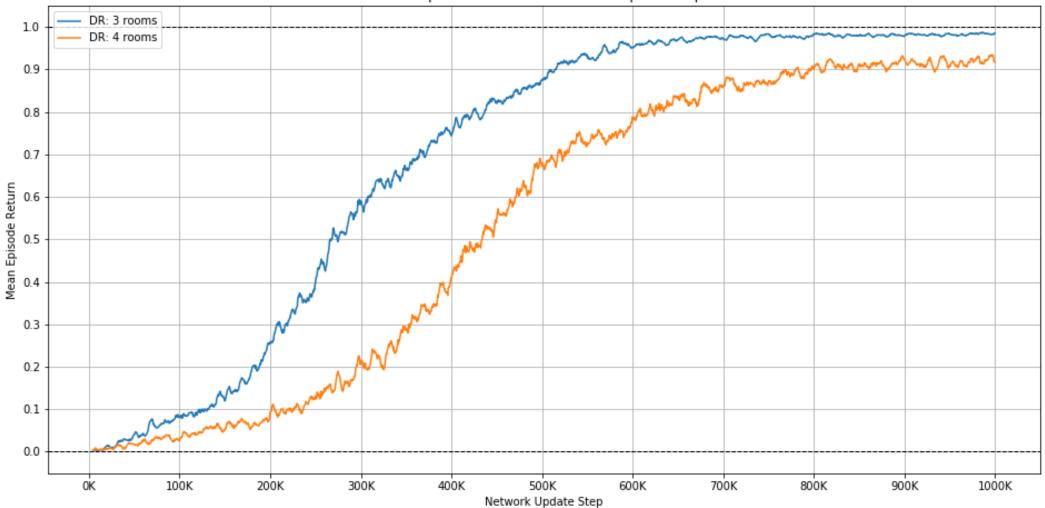


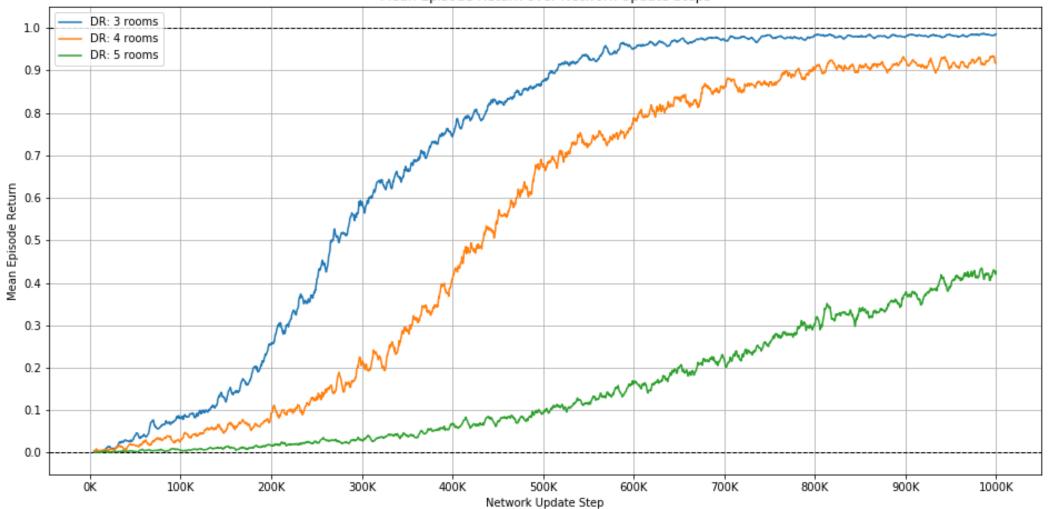
Five Rooms?

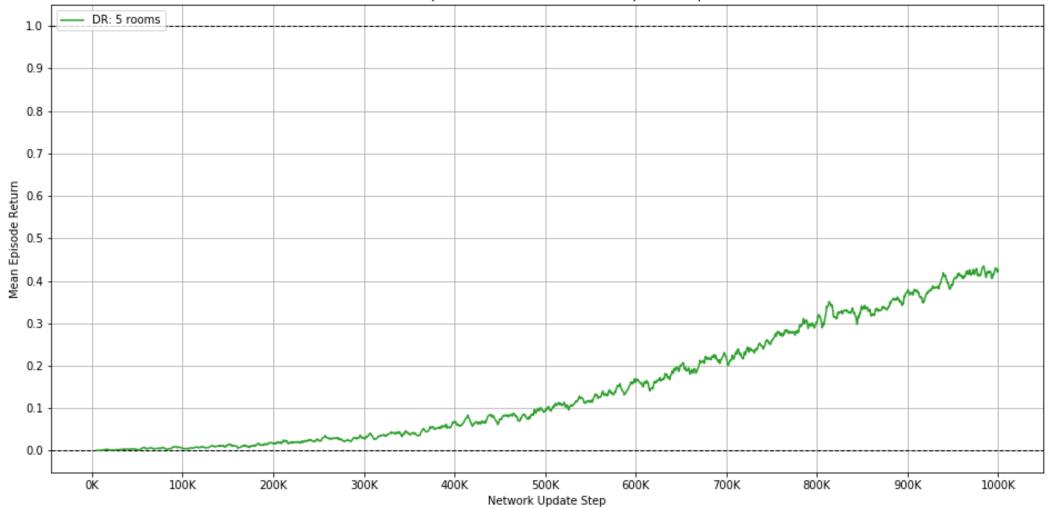


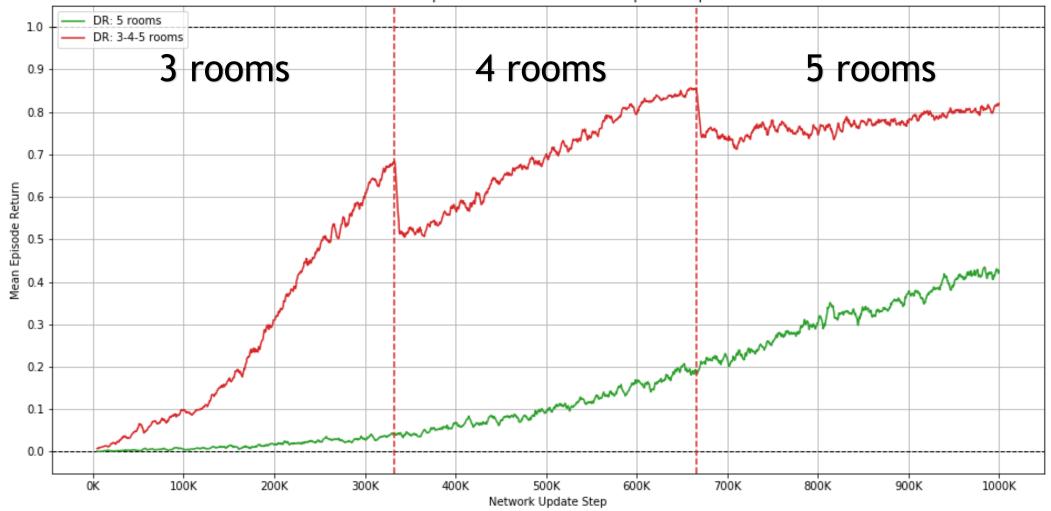












x:2.89 y:17.46 angle:307 action:turn_left step:663

Result: DR: 3-4-5 Rooms

Conclusion

- Important modifications to include for sparse reward problems
 - Distributed data generation
 - Prioritised experience replay
 - ► N-step update
- Exploration improvements
 - Curriculum learning
 - Domain randomisation
- Partially observability
 - ► Frame-stacking
 - Action memory
- Future work
 - Better exploration strategies (other than e-greedy)
 - Longer memory (LSTMs)

Applications

General algorithm

Only requires image observation and a reward signal

snake

