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Introduction (cont.)
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Model structure
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Localisation methods

Two localisation methods:

I GradCAM

• Introduced in the vision domain to localise an object in an image.

• Works with any trained CNN architecture.

• Determines the portion of an input that contributes to a decision of
interest using gradient information.

I PSC

• Designed to simulateneously perform detection and localisation of
keywords in speech utterance.

• The CNN architecture is restricted in some ways (No intermediate
max-pooling; no fully-connected layers; LogSumExp function as the
global pooling function).
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Evaluation and Results

Supervision method

Mechanism BoW Visual

PSC 63.6 19.1

GradCAM 17.8 16.0

Table 1: Oracle localisation accuracy (%) when assuming perfect detection.

BoW Visually-supervised

Mechanism P R F1 Accuracy P R F1 Accuracy

PSC 75.2 53.0 62.2 50.4 28.6 8.0 12.5 7.6

GradCAM 17.7 24.5 20.5 13.2 5.0 5.7 5.3 4.4

Table 2: Actual localisation precision, recall, F1 and accuracy (%) when taking
detection into account with a threshold of λ = 0.4.
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Evaluation and Results (cont.)

Figure 2: Examples of localisation with the visually supervised PSC mechanism.
The keyword being localised is shown on the right of each plot.
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Conclusions

I We asked whether keyword localisation in speech is possible with two
forms of weak supervision when location information is not provided.

I We attempted to answer the question by comparing two localisation
methods (PSC and GradCAM) with two forms of supervision:
bag-of-word (BoW) labels and visual context.

I While the GradCAM (a saliency-based method) performed poorly,
PSC (a method where localisation is performed as part of the
network) performed well with BoW supervision and showed that
visual supervision does provide potential for higher precision
localisation.

I Our results suggests a mismatch between saliency-based localisation
and the multi-label model used here, with a superior detection
model performing poorly in localisation. This suggest that better
localisation should be possible given a mechanism better aligned to
the model and multi-label classification loss.
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Thank you for listening!
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Supplementary materials

α = 0.4 α = 0.6

Model P R F1 P R F1

Visual supervision:

PSC 44.5 9.8 16.1 74.7 4.3 8.1

GradCAM 29.3 22.0 25.1 42.7 12.7 19.6

BoW supervision:

PSC 82.2 49.0 61.4 87.8 46.1 60.4

GradCAM 79.3 52.6 63.2 82.5 50.9 63.0

Table 3: Keyword detection scores (without considering localisation) with
threshold α.
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Supplementary materials (cont.)

Figure 3: An example localisation with the GradCAM model for the keyword
“dress”.
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