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Why should
How did this
When will things
WHEN turn bad, how long
do we have to act?
What can we
WHAT (ML) do to help?
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Earth’s temperature is rising

Global Temperature Anomalies (" C)

0.6 -

0.4 -

0.2 -

0.2 -

-0.4 -

'ﬂ.E‘ T T
1880 1900

1920

1940
Year

1960

1930

2000

3/75
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...and this correlates with atmospheric CO2 levels

PARTS PER MILLION
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Atmospheric CO, at Mauna Loa Observatory
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Scripps Institution of Oceanography
NOAA Earth Systerm Research Laboratory
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Variability in CO2 levels

CO, during ice ages and warm periods for the past 800,000 years
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Temperature and CO, from Antarctic ice cores
over the past 800,000 years
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Milankovitch cycles

Eccentricity Obliquity/Tilt Precession
22.1°-24.5°

100,000 years 41,000 years 23,000 years

875



CO, during ice ages and warm periods for the past 800,000 years
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CO, during ice ages and warm periods for the past 800,000 years
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Arctic sea ice extent over the last 1,450 years
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We expect arise of 1-1.5 degrees?

Current

Temperature and CO, from Antarctic ice cores S 400
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Oceans absorb heat first

20+

™ Ocean Heat Cortent 0 to 700 metres

164 B Ocean Heat Cortent 700 to 2000 metres

= B Land +Ice + Atmosphere
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= 10+
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Year
Figare 1 Land, atmosphere, and ice heating (red), 0-T00 meter ONC inereasc (licht blue), 700-2000 meter ORI
increase {dark blue)
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Possible Futures
| 0

Hothouse Earth
(millenma)

Temperature _,,

What is so significant

about 2 degrees? 2°C Stabilized /

Earth P

Sea level —»

Glacial-Interglacial
Cycle (100,000 y)

Steffen et al. Trajectories of
the Earth System in the

Anthropocene, PNAS, 2018,
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Probability of extreme events

Climate sensitive systems

Amplifying feedback loops



Probability of
extreme events
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NASA Global Climate Data

shifting Distribution of Summer Temperature Anomalies
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History of extreme weather events

Murnzer

1000
e00
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Climate sensitive systems
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CORAL REEF
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Coral bleaching In
the Great Barrier Reef

NORTHERN SECTOR A -

| 522 reefs surveyed

81% severely bleached

= 1% noi bleached

CENTRAL SECTOR
226 reefs surveyed

III." 33% severely bleached
10% nol bleached

—

SOUTHERN SECTOR
163 reefs surveyed

1% severaly bleached
25% not bleached
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@ &~ ; 74 of all ocean
1@ | 2 species depend
N G e el on coral reefs

%+ Large camivore = Detrilivore i Coral
=={ Pelagic piscivore 7™ Planklivores iy Macroaigas
.;‘i*i'-*!n Benthic piscivore =8k, Coral cryplic sy TUIF algae
4% Meso-camivore &8 Inveriebrale .. Defrilus
.ﬁ Invertivore @ Urchin . Plamklon
{:;fl Harbivora
Plaisance et al., (2011) The Diversity of Coral
Reefs: What Are We Missing? PLoS ONE 21/75



Amplifying feedback loops

TEMPERATURES RISE

Ice albedo
feedback loop

CARCTIC SEA
AS REFLECTIVE = ICE MELTS
ICE DISAPPEARS, r

DARKER OCEAN
WATER ABSORBS

MORE HEAT
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VANISHING ARCTIC ICE
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Global temperature changse (relative to pre-industrial)
0°C 1°C 2°C 3°C 4°C 5°C

Food Falling crop yields in many areas,
develo pmg regions

Fessible nsrng
some high l‘atm'.rd

Significant decreases in
availability in many areas
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supplies th ]

Sea level rise
threatens majc

several areas

Ecosystems

Extensive Rising number of species fac

fo Coral Ree
Extreme
Weather Rising intensity of storms, forest fires, droughts, floodin
Events
Risk of Abrupt and F ' o o
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Changes pL farg E
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Global energy system is very complex

Global Energy Flows W m™
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Global carbon cycle is very complex
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How do we know
humans are to blame?
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Carbon isotope ratio in the atmosphere

@

.-"'q,_‘x

Stable isotopes of CARBON:

12": (98.9% of all carbon) = 13":“2
r-/ﬁ\*?’
B3C (119 of all carbon) O 12C0O
- 2
y
13
Measure — in the atmosphere, in other carbon stocks
'IZC
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RELATIVELY HIGH —— ="HEAVY"
12c 13C
RELATIVELY LOW —— =“LIGHT"

12c
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Mauna Loa Observatory, Hawaii and South Pole, Antarctica

Monthly Average Carbon Isotopic Trends

Mata from Soripps I.".'ﬁE Prograr | ast undater March 20059
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Intergovernmental Panel on Climate Change (IPCC)

FAR SAR TAR AR4 ARS  SR15 MR AR6
* | * s . . ¢ o e o
IPCC - jointly UNFCCC Kyoto  Adaptaton 2 °Climit Paris Agreement | SROCC | UNFCCC
estzhlished hy : ' . SRCCL ! Global

WMO Invld UNEP , Stockiake

202009 | 2023
1970s- 1290 2001 2013/2014 2016-2022
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Process of
preparing reports
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Sea lce Extent (million sgquare kilometers)

10.0

=
=
|

-3
=
|

L
=]
]

ra
L

0.0

o= NI

1950

Arctic September Sea Ice Extent:
Observations and Model Runs

— Observations
=== Mean of Models
Standard Deviation of Models

1978 2000 2025 2050
Year

33775



In a climate system with net positive feedback,
climate response is likely to be greater than expected

Observed sea level rise vs IPCC projections
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Human attribution from the IPCC
1st, 2nd, 3rd, 4th assessment reports

o |PCC, 1990: “by increasing [greenhouse gas] concentrations...

humankind is capable of raising the global-average
annual-mean surface-air temperature”

» IPCC, 1995: "The balance of evidence suggests a discernible
human influence on global climate”

b |P’C'(,-.Ir 2001: “most of the observed warming over the last 50 years Is Iikely to have
been due to the increase in greenhouse gas concentrations”

» IPCC, 2007: "Most of the observed increase in global average temperatures since the
mid-20th century is very likely due to the observed increase

in anthropogenic greenhouse gas concentrations.”
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The Scientific Consensus
on Climate Change

97% 97.5% 98.5%

Coran and Anderegaq et al 2010 Cook et al 2013
Zimmerman 2009 908 scientists 10,206 scientists
79 scientists
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Frequency

a0
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10

—
FPublic Perception of Consensus Reality; s—

\ 97% Consensus ¥

0-5%  5-10%  10-30%  30-50%  50-70%  70-90%  90-95%  95-100%
Percentage of Climate Scientists Agreeing on Human-Caused Global Warming
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How ¢ Handfvl of Svientists
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Hansen vs Lindzen
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CLAP IF YOU THINK

GLOBAL WARMINGS
A HOAX s
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Relationship between CO2 and temperature
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Emissions (Gton C per year)

Cumulative emissions
so far ~540 GtonC

About 1100 GtonC gets
us about 2°C
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Representative concentration pathways (RCPs)
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Annual Emissions (Gton C per year)
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WHAT



Save the planet

Viachine Learning



FARMAGEDDONS
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Building Climate Resilience

MITIGATION @L&ﬁ) ADAPTATION

ACTIONTOREDUCE EMISSIONS \':| |" I ACTION TO MANAGETHE RISKES OF
THAT CAUSE CLIMATE CHANGE Water CLIMATE CHANGE IMPACTS

S R a LS =
Ll =

[

Sustainable [l'_Fll ‘g;'f j‘L i |:"]:|
T saster management
transportation % Hmh:mrq-'p' u:ﬁ;:_d & business continuity | —

Clean enengy

Energy
efhciency
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concentration of

GHGs in thea
atmasphere

Climate Changs

Geoanginasring

Aduptation
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Tackling Climate Change with Machine Learning

David Rolnick!*, Priya I.. Donti?, Lynn H. Kaack®, Kelly Kochanski?, Alexandre Tacoste®,
Kris Sankaran®", Andrew Slavin Ross®, Nikola Milojevie-Dupont™!* Natasha Jaques!!,
Anna Waldman-Brown'!, Alexandra Luccioni®", Tegan Maharaj"", Evan D. Sherwin®,
S. Karthik Mukkavilli®", Konrad P. Kording', Carla Gomes'?, Andrew Y. Ng'?,
Demis Iassabis'*, John C. Platt!®, Felix Creutzig®!", Jennifer Chayes'®, Yoshua Bengio®’

"University of Pennsylvania, “Carnegie Mellon University, *ETH Ziirich, *University of Colorado Boulder,
“Element Al, ®Mila, "Université de Montréal, *Harvard University,
*Mercator Research Institute on Global Commens and Climate Change, '"Technische Universitit Berlin,
"Massachusetts Institute of Technology, "*Cornell University, ' Stanford University,
DeepMind, '"Google AT, '“Microsoft Rescarch

Abstract

Climate change is one of the greatest challenges facing humanity, and we, as machine learning ex-
perts, may wonder how we can help. Here we describe how machine learning can be a powertul tool in
reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids
o disaster management, we wdentily high impact problems where existing gaps can be lilled by maching
learning, n collaboration with other fields. Our recommendations encompass exciting research ques-
tions as well as promising business opportunities. We call on the machine learning community to join

the global ellort against chimate change. 56/75



* Forecasting power
generation and demand
* Accelerating material

* Reducing waste in
supply chains
* Reduce material via

* new constructions science
* Reduce factory energy * Advancing research of
ELECTRICITY SYSTEMS
consumption HUW ML can h9|p nuclear fusion

* Understand

£nh - transportation patterns
nhance precision . .

_-— P TRANSPORTATION and optimise routing
agrlf:l.l ure _ * Electric autonomous
Tracking defore stahnr.u vehicles
Automated afforestation » Model demand
Fire management FARMS & FDRESTS |

*« Model energy
consumption

*  Low-emission
infrastructure

* Smart buildings

BUILDINGS & CITIES
ST75



= =
" o - 2 =
5 £ = 2| E8 |, .|
=S| e |25 2E ¥Z|ZE|BE ZE|E. I
SE| % |EE§ 5 2S5 88|52 EE |25 B
Flectraty Systems 1 1.1 ::; | 1.1 :; 1.3 [1.1 1.1
2
o . 2L 21 2.1 - 2.1
I'ransportation| 2.2 2 5 2 24 2 24 2
2.4 ' '
Buildings & Citics G2 |33 | [ 3 AL AL |33 3
| 2
Industry ::'; 43 | 43 | M 1‘_; ji 4.3
5.1
Farms & Forests 5.3 5.2 5.4
5.4
C0z Removal 6,3 0.3 0.3 _ 0.2
Climate Prediction) 7.1 7 7.3 17
Societal T I 8.1 .4 8.2 5.2 2.3 8.2 8.1 8.3
SRLICTELEL ITITAEC LS - . . . . .
P g4 | 7 | 83
L 0.3
Solar Geoengineering 9.3 4.4 o4 92
Tools for Tndividuals | 1001010000 [ 1020 103 102 |11 0.2 10.2
. 11.2| 112 [[11.1 [11.1
Tools for 5 tv 11.1 11.3 11.1 11 11.1
bols for Society] | SRS S T ! e
Education 12,2 12,1
Finance 113.2 13 13.2]

Table 1: Climate change solution domains, along with areas of ML that are relevant to each, Rows of the

tahle correspond to sections of this paper. This rahle should not he seen as comprehensive.
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High Leverage | denotes bottlenecks that domain experts have identified in climate change mitigation
or adaptation and that we believe to be particularly well-suited to tools from ML. These solutions may
be especially [ruitiul for ML pracuitioners wishing to have an outsized impact, though applications
not marked with this flag are also valuable and should be pursued.

Long-term | denotes solutions that will have their primary 1mpact after 2040. Such solutions are
neither more nor less important than short-term solutions — both are necessary.

denotes solutions that are risky in one of the following ways: (i) the technology involved
15 uncertam and may ultimately not succeed, (11) there 1s uncertainty as o the impact on GHG emis-
sions (for example, the Jevons paradox may apply®), or (iii) there is the potential for unwanted side
effects (negative externalities).
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Learn. ldentify how your skills may be useful — we hope this paper provides a starting point.

Collaborate. Find collaborators, who may be researchers, entrepreneurs, established companies, or
policy-makers. Remember that for every domain we have discussed here, there are experts 1n that area
who understand 1ts opportunities and pitfalls, even 1f they do not necessarily understand ML.

Listen. Listen to what your collaborators say 1s needed, and gather mput more broadly as well to
make sure your work will have the desired impact. Groundbreaking technologies have an impact, but
so do well-constructed solutions to mundane problems.

Deploy. Ensure that vour work 1s deployved where 1ts impact can be realized.
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Andrew Ng talk at ICML

Example workshop on ML for CC

Wind turbine detection Iin satellite
Imagery using deep learning

Stanford ML

3 STANFORD
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SYSTEMS LAB
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e
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Prof. Ram Zhecheng Wang
Rajagopal







Mitigation Wind Turbine Detection S3L & Stanford ML Group

Data:
e Train model on 100K images

~50K USGS positives
e Run detection on 1.8M images

Baseline Model.
DenseNet-121

Weakly Supervised
Localization: GradCAM




Mitigation Wind Turbine Detection

Real-time wind speed SR 10)<ton
http:~//hint.fm/wind/
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* Reducing waste in
supply chains

* Reduce material via

* new constructions

* Reduce factory energy

consumption How ML can hEIp

Enhance precision
agriculture

Tracking deforestation
Automated afforestation

Fire management FARMS & FDRESTS |

BUILDINGS & CITIES

ELECTRICITY 5YSTEMS

TRANSPORTATION

Model energy
consumption
Low-emission
infrastructure
Smart buildings

Forecasting power
generation and demand
Accelerating material
science

Advancing research of
nuclear fusion

Understand
transportation patterns
and optimise routing
Electric autonomous
vehicles

Model demand
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Remember to be conscious of our own impact

Consumption COse (Ibs)
Air travel, 1 passenger, NY ++SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468
Transformer (big) 192
w/ neural architecture search 626,155

Strubel et al., Energy and Policy Considerations for Deep Learning in NLP (2019) 67775



sther species suval,
o
Now.
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At least get a Spekboom! 44

Hectare for hectare ten times more
effective than the Amazon rainforest at
removing carbon dioxide from the
atmosphere and they live up to 200

years.




Thank you!



References and Resources

* Climate Change Al: https://www.climatechange.ai/

» Skeptical Science: https://skepticalscience.com/

* IPCC: https://www.ipcc.ch/

* Climate Literacy: https://www.youtube.com/user/climateliteracy
* NASA Global Climate Change: https://climate.nasa.gov/

* A Guide to CC by Neil Kakkar:
https://neilkakkar.com/climate-change.html

* Codecentric blog by Paul Strobel:
https://blog.codecentric.de/en/2019/09/how-to-tackle-climate-chang
e-with-machine-learning-electricity-systems/#post-693%96




e “We do not inherit the earth from our ancestors. We borrow it from
our children.” - Native American Proverb

* “If you really think that the environment is less important than the
economy, try holding your breath while you count your money.” —
Guy McPherson

* “The general population doesn’t know what'’s happening, and it
doesn’t even know that it doesn’t know.” - Noam Chomsky



Nitrous oxide (N,0)

G0=Q

Water vapor (H,0)

Carbon
dioxide (CO,)

Methane (CH,) \3



- Energy increases

Shortwavelength

Lang wavelength
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Radiation Intensity
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Two atoms?

OO

Symmetric Stretch

Interacts
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Radiation Transmitted by the Atmosphere
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Energy Radiaring From Earth's surface Energy Radiating From Earh's surface




P

——

CO2 emissions
per capila

High
emissions

Low
- amissions

Those who contribute the least greenhouse gases
will be most |mpacted by cllmate change

Vulnerability to
climate change

- High
vulnerability
—

Levw
vulnerability

Samson et al 2011



Projected impact of climate change on agricultural yields

" A by culprlt Ie clierato changs
- carhon emissbns - can also halp

O\ St B fi Change in agricultural productivity g }
r, l;l': 1_ nge In agricuitura u /
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Bourca: Chna W., 2007, Glabal Warming and Agricuture,
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