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Minecraft

• 3D, first-person game

• Survive in open world

• Worlds are:

❖ Procedurally generated 

❖ Extremely large (60x60 million blocks)

❖ Dynamic

❖ Diverse

• Presents some challenges faced in the real world
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MineRL 2019

• Goal: Obtain a diamond in Minecraft

• Sample-efficient & generalized machine learning

• Limitations:

❖ 4 days training

❖ 8 million environment interactions

❖ No human domain knowledge

❖ No external data

• Evaluate submissions with unseen texture pack & data
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Treechop Environment

• Goal: Collect 64 logs

• Episode termination: 7 minutes or death

• Spawn location: A forest

• Equipped tool: Diamond axe
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ObtainDiamond Environment

• Goal: Obtain one diamond

• Episode termination: 15 minutes or death

• Spawn location: Minecraft random spawn

• Equipped tool: None – need to craft tools

Item hierarchy to reach goal:
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Observation Space

(What the agent sees)

• 64x64 RGB, Point of View (POV) image:

(Only for ObtainDiamond env)

• Vector of 3 components describing the item equipped.

• Vector representing 18 inventory items:
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Coal Cobblestone Crafting table

Dirt Furnace Iron axe

Iron ingot Iron ore Iron pick-axe

Log Planks Stick

Stone Stone axe Stone pick-axe

Torch Wooden axe Wooden pick-axe



Action Space

(What the agent can do)
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Movement Crafting Camera

Attack Craft Camera pitch delta

Back Equip Camera yaw delta

Forward Nearby Craft

Jump Nearby Smelt

Left Place

Right

Sneak

Sprint (Only Obtain environments)



MineRL Dataset

• Recordings of humans solving the MineRL environments

• Same actions & observations as the agent

• 60 million state-action pairs! 

• Behavioural Cloning (supervised learning from experts)

• Dataset textures also altered for evaluation
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Reinforcement Learning

• Reward desired behaviour

• Agent learns to maximize rewards by interacting with the environment

• Slight bias toward immediate rewards

• Deep Q-Learning: 

Use a neural network to learn the value of each action in a state
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Agent Environment

action

reward

next state



Network Architecture
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Convolutional Neural Network block



Network Architecture (cont.)
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Network Head



Why 51?

• DQN does not account for uncertainty.

• Distributional RL does!

• Estimate the probability distribution for a 

range of returns.

• 51 atoms works well… 

• Dubbed C51.
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Dabney, W., Ostrovski, G., Silver, D. and 

Munos, R., 2018. Implicit quantile networks 

for distributional reinforcement learning. 

arXiv preprint arXiv:1806.06923.



But can it chop trees?
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… Yes, it can



Ablation on Treechop
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Hierarchical RL

Consider the following analogy:

• We want to build a robot to make tea

• Making tea involves many small tasks – some of which 

require other tasks to be completed

• For each of these small tasks, the agent needs to 

manipulate a robot body

• HRL splits these task into several sub-tasks

• Each of these sub-tasks are then solved by a sub-policy
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Options Framework

• Create high-level policy to choose from a set of low-level policies 

(options)

• Train high-level policy with dataset

• Train options with relevant observations

• Decide next option when inventory changes
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Can it obtain a Diamond?
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Without Hierarchy

Proportion of 300 episodes in which each 

item was collected

With Hierarchy



MineRL 2019 Winner Result
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Proportion of 1000 episodes in which 

each item was collected

Lessons learned:
• Finding a diamond in Minecraft is possible.

• Currently requires some hand-crafting.

ForgER: How does it work?
• Extract sample trajectory from 

experts

• Limit crafting actions to relevant sub-

policies

• Switch sub-policy when item is 

collected



Conclusion

• Behavioural cloning provides good starting policy

• RL improves generalization

• HRL maintains knowledge for solving later tasks

• Finding a generalized solution is a difficult task
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Future Work

• Select sub-policies better

• Maybe IL+RL?

• Bayesian NNs to avoid being forced to select sub-policy.

• Improved distributional DQN methods 

• IQN or FQF?
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Thank You Dankie Enkosi



Branching DQN
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Problem: DQN can only select one action per step.

Solution: Branch for each action.

Tavakoli, A., Pardo, F. and Kormushev, P. (2017). Action branching architectures for deep reinforcement 

learning.CoRR, vol. abs/1711.08946.1711.08946.



Distributional DQN methods
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• Quantile Regression (QR-DQN)

• Implicit Quantile Networks (IQN)

• Fully Parameterized Quantile 

Function (FQF)

Dabney, W., Ostrovski, G., Silver, D. and Munos, R., 2018. Implicit quantile networks for 

distributional reinforcement learning. arXiv preprint arXiv:1806.06923.

Yang, D., Zhao, L., Lin, Z., Qin, T., Bian, J. and Liu, T.Y., 2019. Fully 

parameterized quantile function for distributional reinforcement learning. In 

Advances in Neural Information Processing Systems (pp. 6193-6202).



Obtain Diamond video
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