
Probabilistic Modelling with Tensor Networks:

From Hidden Markov Models to Quantum Circuits

Ryan Sweke

Freie Universität Berlin

The Big Picture

“Machine Learning”

Tensor networks

Classical ML Quantum ML

Heuristics Statistical Learning Theory

• Sophisticated models

• Incredible results

• Very little understanding

• Simplified models

• Often loose bounds

• Hard!

• Few models

• Very little understanding

• Abstract settings

• Very few results

• Q vs C?!

Heuristics Statistical Learning Theory

TN’s provide a nice language to bridge heuristics with theory, and quantum with classical!

What is this talk about?

This talk is about Probabilistic Modelling…

Given: Samples { ⃗d 1, …, ⃗d M} from an unknown discrete multivariate probability distribution P(X1, …, XN) .

Task: “Learn” a parameterized model P(X1, …, XN | ⃗θ) .

This may mean many different things, depending on the task you are interested in…

Performing inference (i.e. calculating marginals).

Calculating expectation values.

Generating samples.

Depending on your goal, your model/approach may differ significantly!

Xi ∈ {1,…, d}⃗dj = (Xj
1, …, Xj

N)

Probabilistic Modelling

I like to think of there being three distinct elements:

(1) The model P(X1, …, XN | ⃗θ) .

(3) The “task” algorithm.

Performing inference via belief propagation for Probabilistic Graphical Models.

Expectation values via sampling for Boltzmann Machines.

Generating samples directly via a GAN.

(2) The learning algorithm: { ⃗d 1, …, ⃗d M} → ⃗θ

Key Question: Expressivity?

Model Dependent!

Model Dependent!

Typically by maximising the (log) likelihood: ℒ = ∑
i

log[P(⃗d i | ⃗θ)]

Probabilistic Modelling

This overall picture is summarised quite nicely by the following “hierarchy of generative models”:

Maximum Likelihood

Explicit Density

P(X1, …, XN | ⃗θ)
Implicit Density

Tractable Density Approximate Density

(Some) Probabilistic Graphical Models Boltzmann Machines

VAE

GANs

We focus here!

Probabilistic Graphical Models

We will see that tensor networks provide a unifying framework for analyzing probabilistic graphical models:

Probabilistic Graphical Models

Bayesian Networks
(Directed Acyclic Graphs)

Markov Random Fields
(General Graphs)

Factor Graphs

Tensor Networks

Tensor Networks

Tensor network notation provides a powerful and convenient diagrammatic language for tensor manipulation...

- A vector is a 1-tensor:

- A matrix is a 2-tensor:

- A shared index denotes a contraction over that index:

We represent tensors as boxes, with an "open leg" for each tensor index

An element of the vector is a scalar ("close" the index)

"vectorization" is very natural in this notation...

Tensor Networks

A discrete multivariate probability distribution is naturally represented as an N-tensor...

P(X1, …, XN) =

A tensor network decomposition of P is a decomposition into a network of contracted tensors...

dN parameters!

rP(X1, …, XN) = Matrix Product State

parameters!

We call the bond dimension - directly related to the underlying correlation structure.r

eg: for independent (uncorrelated random variables).

These representations are very well understood in the context of many-body quantum physics.

Probabilistic Graphical Models: Bayesian Networks

A BN models this distribution via a directed acyclic graph expressing the structure of conditional dependencies.

Given a probability distribution P(X1, …, XN) =

XNX1

X1 X2 X3

H1 H2 H3

For example: A Hidden Markov Model…

X1

P(X1, X2, X3, H1, H2, H3) = P(X1)

X1

H1

P(H1 |X1)

X1

H1 H2

P(H2 |H1)

X1 X2

H1 H2

P(X2 |H2)

X1 X2

H1 H2 H3

P(H3 |H2)

X1 X2 X3

H1 H2 H3

P(X3 |H3)

The probability of “visible” variables is via marginalisation:

P(X1, X2, X3) = ∑
H1,H2,H3

P(X1, X2, X3, H1, H2, H3)

< dN parameters!

g3(H2, X3)P(X1, X2, X3, H1, H2, H3) = g1(X1, H1) g2(H1, X2, H2)

Probabilistic Graphical Models: Markov Random Fields

A Markov Random Field models the distribution via the product of clique potentials defined by a generic graph.

Given a probability distribution P(X1, …, XN) =

XNX1

For example:

X1

H1

X2

H2

X3

maximal fully-connected subgraph

NB - Clique potentials are not normalised - explicit normalisation is necessary!

1
Z

Probabilistic Graphical Models: Factor Graphs

Bayesian Networks and Markov Random Fields are unified via Factor Graphs…

P(X1, …, XN) =
1
Z ∏

j

fj(⃗X j)

Bayesian Networks: Factors are conditional probability distributions (inherently normalised)

Markov Random Fields: Factors are clique potentials (explicit normalisation necessary)

Explicitly:

X1 X2 X3

H1 H2 H3

X1 X2 X3

H1 H2 H3

f1

f2

f3

f4

f5

X1

H1

X2

H2

X3 X1

H1

X2

H2

X3

f2

f3f1

∑ H1 ∑ H3

∑ H2

Probabilistic Graphical Models: Factor Graphs to Tensor Networks

Let’s consider the Hidden Markov Model in more detail…

X1 X2 X3

H1 H2 H3

f1

f2

f3

f4

f5

Marginalizing out the hidden variables means

contracting the connected factor tensors!

X1

X2

X3

H1 H3

f1 f5

X1 X2 X3

With non-negative tensors!

The probability distribution over the visible variables is

exactly equivalent to an MPS decomposition of the

global probability tensor!

X1 X2 X3

H1 H2 H3

Exact non-negative canonical polyadic decomposition

Probabilistic Graphical Models: Factor Graphs to Tensor Networks

The other direction also holds…

X1 X2 X3

Hidden detail: r′� ≤ min(dr, r2)

Hidden Markov Models and non-negative MPS are almost exactly equivalent

X1 X2 X3

H1 H2 H3

Contract

Yes.

Probabilistic Graphical Models: Factor Graphs to Tensor Networks

Take home message - we can use Tensor Networks to study and to generalise probabilistic graphical models!

XNX1

Any tensor network which yields a non-negative tensor when contracted!=

Includes all probabilistic graphical models

Goal: By studying MPS based decompositions can we…

Make rigorous claims concerning expressivity?

Draw connections to quantum circuits?

Make claims concerning expressivity of classical vs quantum models?

See I. Glasser et al “Supervised Learning with generalised tensor networks” (Formal connection and heuristic algorithms)

Tensor Network Models: HMM are MPS

The first model we consider is non-negative MPS - which we already showed are equivalent to HMM…

X1

A1

XN

AN
r

NB: All tensors have only non-negative (real) entries!

XNX1

T

We call the minimal bond dimension r necessary to factorise T exactly the TT − Rankℝ≥0 .

``Tensor-Train” rank

The bond-dimension necessary to represent a class of tensors characterises the expressivity of the model!

Note that for probability distributions over two variables (matrices) the TT − Rankℝ≥0 is the non-negative rank:

Tensor Network Models: HMM are MPS

X1

T

X1

A r

X2X2

B

i.e. the smallest r such that T = AB with and non-negative. A B

Not such an easy rank to determine!

(NP-hard to determine whether rank is equal to non-negative rank.)

Tensor Network Models: Born Machines

The second model we consider is Born Machines…

XNX1

T

X1

A1

XN

AN
r

X1

A†
1

XN

A†
N

We can use either real or complex tensors!

We call the minimal bond dimension r necessary to factorise T exactly the Born − Rankℝ/ℂ .

Tensor Network Models: Born Machines

In the case of only two variables this is the real/complex Hadamard (entry-wise) square root rank…

X1

T

X2

X1

A r

X2

B

A† B†
r

X1 X2

i.e. the smallest such that T = |AB |∘2r

In the real case:

r = min
± [rank

± t11 … ± t1d

⋮ ⋮
± td1 … ± tdd

]

AB is an element wise square root!

In the complex case:

r = min
⃗θ

[rank
eiθ11 t11 … eiθ1d t1d

⋮ ⋮
eiθd1 td1 … eiθdd tdd

]

combinations - bad fast!2d2

even worse :(

Tensor Network Models: Born Machines

Outcome probabilities of a 2-local quantum circuit of depth are described exactly by a BM of bond dimension D dD+1 .

d

d

|0⟩ |0⟩ |0⟩ |0⟩

dD+1 .d2

|0⟩ |0⟩ |0⟩ |0⟩

SVD

The probability of a measurement outcome is described by the BM defined via the circuit MPS:

contract

P(X1, …, XN) =

X1 XN

X1 XN

Tensor Network Models: Locally Purified States

The final model we consider is Locally Purified States…

We can use either real or complex tensors!

XNX1

T

X1

A1

XN

AN
r

X1

A†
1

XN

A†
N

μ

We call the minimal bond dimension r necessary to factorise T exactly the Puri − Rankℝ/ℂ .

In the case of only two variables this is the positive-semidefinite rank

Tensor Network Models: Locally Purified States

In the case of only two variables this is positive semidefinite rank…

Given a matrix the PSD rank is the smallest for which there exist positive semidefinite matrices
of size such that

M, r Ai, Bj

r × r M = Tr(AiBj) .

Mi j C D

i j

A† B†

i j

B

j

A

i
A B

i j

i j

A† B†

Tensor Network Models: Locally Purified States

LPS are equivalent to 2-local circuits with local ancillas…

P(X1, …, XN) =
|0⟩S |0⟩A |0⟩S |0⟩A

|0⟩S |0⟩A |0⟩S |0⟩A

X1 XN

XNX1

Crux: We can sample LPS by partial measurements of quantum circuits!

|0⟩S |0⟩A |0⟩S |0⟩A

|0⟩S |0⟩A |0⟩S |0⟩A

X1 XN

XNX1

= =

X1 XN

X1 XN

X1 XN

X1 XN

=

Sampling is easy!

Tensor Network Models Summary

Note that as classical models:

However, as quantum models (i.e. in an HQC setting):

Independent of the learning and task algorithms, we are interested in the relative expressivity!

Learning is efficient - i.e. tractable likelihood and gradients.
Inference is efficient - marginalization is a simple efficient contraction.

Learning is not straightforward - likelihood and gradients need to be estimated or bounded.

But, exponential bond dimension of classical models requires only linear depth of quantum models!

Efficient sampling algorithms also exist (eg. ancestral sampling)

Expressivity Results

We first ask: For a fixed bond-dimension how are all the representations related?

MPSℝ≥0 BMℝ

BMℂ
MPSℝ = MPSℂ

LPSℝ

LPSℂ

Much more interesting though is the following question:

Given one representation of bond dimension (eg: r, BMℂ)

what bond dimension is necessary to write this tensor using another representation?r′� (eg: BMℝ)

We know that in the worst case r′� > r, but by how much?

Surprising!

1) Controlled overheads: eg

Expressivity Results

We answer the question of relative overheads as follows:
Table 2: Results of Proposition 3.

TT-rankR TT-rankR�0
Born-rankR Born-rankC puri-rankR puri-rankC

TT-rankR = x x2 x2 x2 x2

TT-rankR�0
No = No No No No

Born-rankR No No = No No No
Born-rankC No No⇤ x = No⇤ No⇤
puri-rankR No x x 2x = 2x
puri-rankC No x x x x =

Proposition 5. There exists a family of non-negative tensors over 2N binary variables and constant209

TT-rankR�0
=2 (and hence also puri-rankR/C = 2) that have Born-rankR � ⇡(2N+1

), where ⇡(x) is210

the number of prime numbers up to x, which asymptotically satisfies ⇡(x) ⇠ x/ log(x).211

Proposition 6. There exists a family of non-negative tensors over 2N binary variables and constant212

Born-rankR=2 (and hence also constant Born-rankC and puri-rankR/C) that have TT-rankR�0
� N .213

Proposition 7. There exists a family of non-negative tensors over 2N binary variables and constant214

Born-rankC=2 that have Born-rankR � N .215

As the techniques via which the results of Proposition 3 were obtained are of interest, we provide a216

sketch of the proof for all ‘No’ entries here (the full proof can be found in the supplementary material).217

Assume that for a given pair of representations there exists a family of non-negative matrices with the218

property that the rank of one representation remains constant as a function of matrix dimension, while219

the rank of the other representation grows. Now, consider such a matrix M of dimension 2

N ⇥ 2

N .220

The first step is to show that M can be unfolded into a tensor network of low rank, for 2N binary221

variables, such that M is a reshaping of the central bipartition of this tensor:222

M =

2

N
2

N

=

2

N
2

N

=

N N

(9)

If a given rank of matrix M is large, the rank of the corresponding tensor network representation of223

the unfolded tensor will also have large rank. While above unfolding requires a particular matrix224

dimension, it is in fact possible to write any N ⇥N matrix M as a submatrix of a 2N ⇥ 2

N matrix, to225

which the above unfolding strategy can then be used as a tool for leveraging matrix rank separations226

into tensor rank separations.227

Finally, in order to discuss the significance of these results, note firstly that the TT-rankR can be228

arbitrarily smaller than all other ranks, however optimizing a real MPS to represent a probability229

distribution presents a problem since it is not clear how to impose positivity of the contracted tensor230

network[21]. All other separations are however relevant for practical purposes since, as discussed in231

Section 4, they apply to tensor networks that can be trained to represent probability distributions over232

many variables. Taken together, these results then show that LPS should be preferred over MPSR�0
233

or BM since the puri-ranks will always be lower bounded compared to the other ranks. Additionally,234

complex BM should also be preferred to real BM as they can lead to an arbitrarily large reduction in235

the number of parameters of the tensor network.236

6 Numerical experiments237

We now investigate how much the previous results apply to random as well as realistic probability238

mass functions.239

6.1 Random tensor decompositions240

We generate random probability mass functions P by generating a tensor with elements chosen241

uniformly in [0, 1] and normalizing it. We then compute minw ||P � T (w)||2, where T (w) is the242

7

We find two very distinct types of result:

puri − rankℝ ≤ 2(Born − rankℂ)

2) Unbounded overheads: eg

There exists a family of probability distributions over an increasing number of random variables N, with:

constant Born − rankℂ .
scales with N. Born − rankℝ

For Born machines complex numbers provide an unbounded amount of expressive power!

Expressivity Results

Some other results to highlight:
Table 2: Results of Proposition 3.

TT-rankR TT-rankR�0
Born-rankR Born-rankC puri-rankR puri-rankC

TT-rankR = x x2 x2 x2 x2

TT-rankR�0
No = No No No No

Born-rankR No No = No No No
Born-rankC No No⇤ x = No⇤ No⇤
puri-rankR No x x 2x = 2x
puri-rankC No x x x x =

Proposition 5. There exists a family of non-negative tensors over 2N binary variables and constant209

TT-rankR�0
=2 (and hence also puri-rankR/C = 2) that have Born-rankR � ⇡(2N+1

), where ⇡(x) is210

the number of prime numbers up to x, which asymptotically satisfies ⇡(x) ⇠ x/ log(x).211

Proposition 6. There exists a family of non-negative tensors over 2N binary variables and constant212

Born-rankR=2 (and hence also constant Born-rankC and puri-rankR/C) that have TT-rankR�0
� N .213

Proposition 7. There exists a family of non-negative tensors over 2N binary variables and constant214

Born-rankC=2 that have Born-rankR � N .215

As the techniques via which the results of Proposition 3 were obtained are of interest, we provide a216

sketch of the proof for all ‘No’ entries here (the full proof can be found in the supplementary material).217

Assume that for a given pair of representations there exists a family of non-negative matrices with the218

property that the rank of one representation remains constant as a function of matrix dimension, while219

the rank of the other representation grows. Now, consider such a matrix M of dimension 2

N ⇥ 2

N .220

The first step is to show that M can be unfolded into a tensor network of low rank, for 2N binary221

variables, such that M is a reshaping of the central bipartition of this tensor:222

M =

2

N
2

N

=

2

N
2

N

=

N N

(9)

If a given rank of matrix M is large, the rank of the corresponding tensor network representation of223

the unfolded tensor will also have large rank. While above unfolding requires a particular matrix224

dimension, it is in fact possible to write any N ⇥N matrix M as a submatrix of a 2N ⇥ 2

N matrix, to225

which the above unfolding strategy can then be used as a tool for leveraging matrix rank separations226

into tensor rank separations.227

Finally, in order to discuss the significance of these results, note firstly that the TT-rankR can be228

arbitrarily smaller than all other ranks, however optimizing a real MPS to represent a probability229

distribution presents a problem since it is not clear how to impose positivity of the contracted tensor230

network[21]. All other separations are however relevant for practical purposes since, as discussed in231

Section 4, they apply to tensor networks that can be trained to represent probability distributions over232

many variables. Taken together, these results then show that LPS should be preferred over MPSR�0
233

or BM since the puri-ranks will always be lower bounded compared to the other ranks. Additionally,234

complex BM should also be preferred to real BM as they can lead to an arbitrarily large reduction in235

the number of parameters of the tensor network.236

6 Numerical experiments237

We now investigate how much the previous results apply to random as well as realistic probability238

mass functions.239

6.1 Random tensor decompositions240

We generate random probability mass functions P by generating a tensor with elements chosen241

uniformly in [0, 1] and normalizing it. We then compute minw ||P � T (w)||2, where T (w) is the242

7

1) Neither real Born Machines nor HMM should be preferred over the other!

2) Conjecture:

There exists a family of probability distributions which requires:
constant circuit depth with local ancillas.

unbounded circuit depth without ancillas!

3) Locally purified states should always be preferred over all other models.

(and might exhibit unbounded expressive advantage!)

Expressivity Results

These are exact results! In practice we are interested in approximations…

We can explore this numerically:

Expressivity Results

In addition, how well do these models perform as hypothesis classes?

Future Directions + Vision

1) We need good algorithms for learning in an HQC setting, to turn these results into good heuristics!

2) Of course, we would like to prove the conjectures :) Help is welcome!

3) Can the general strategy be expanded to other rigorous quantum/classical comparisons?

4) Even more generally, can we identify well posed mathematical questions in statistical learning theory which

• Lie at the quantum/classical interface?

• Would lead to enhanced heuristics if solved?

• Deep Neural Networks (already some ideas)

• More complicated circuit topologies (also some ideas)

Already some ideas here…

(Also, thanks to Ivan Glasser, Nicola Pancotti, Ignacio Cirac and Jens Eisert!)

3) Overheads in the approximate case? Techniques are needed!

