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But, how do we learn discrete representations 
using neural networks?
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A. van den Oord, and O. Vinyals. “Neural discrete representation learning.” 
Advances in Neural Information Processing Systems. 2017.
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Our contribution: we propose and compare two models for 
acoustic unit discovery in the ZeroSpeech 2020 Challenge.

A Vector-Quantized Variational 
Autoencoder (VQ-VAE)1. A combination of Vector-Quantization and 

Contrastive Predictive Coding (VQ-CPC)2.
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Inspired by: J. Chorowski, et al. “Unsupervised speech representation learning using wavenet autoencoders.” 
IEEE/ACM transactions on audio, speech, and language processing. 2019.
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Inspired by: A. van den Oord, et al. “Representation Learning with Contrastive Predictive Coding.” 2018.
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Questions?



Vector Quantized Variational Autoencoder
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