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Obtaining transcriptions is expensive and not always possible.
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Tasks in Zero-Resource Processing

We don't always need to predict text labels:

- Query-by-Example Search: search speech using speech.

- Unsupervised Term Discovery: Discover repeating patterns in
speech.
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These tasks require comparing speech segments.

The conventional method is Dynamic Time Warping.

- Computationally expensive.
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Acoustic Word Embeddings

Acoustic word embeddings x € R”
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We want to map speech to these representation without using labels.



Speaker and Gender Information

Acoustic properties of speech from different speakers/genders differ.

g Lod & p

SpkA

Spsak r B F male lale Male

We want embeddings to be robust.



RNN (Correspondence) Autoencoder
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Speaker/Gender Conditioning
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Adversarial Training
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Speaker/Gender Classifier

-Linear -ReLU .Dropout -Softmax



Evaluating Quality of AWEs

Use the same-different task to evaluate AWEs:

- Measure if AWEs are similar given a threshold.

- Calculate area under Precision vs Recall curve.
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Evaluate Speaker and Gender Predictability

Analyse if the speaker and gender information has decreased:

- Use speaker/gender classifier model.

- Evaluate accuracy.
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Conclusions

- English data shows marginal improvement by incorporating
speaker information.
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- Best Xitsonga model shows 22% improvement.
- It's difficult to remove speaker and gender information.

- Future work ...
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