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Mineral processing
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Continuous, connected, controlled, circulating, complex, changing



Industrial data

ÅOnline physical property sensor data
ïE.g. mass flow rate, density, temperature, pressure

ï~ seconds

ÅOnline image data
ïE.g. rocks on conveyor belts, flotation froth (mud and bubbles)

ï~ minutes

ÅOffline laboratory data
ïE.g. metal content, particle size distribution

ï~ hours

ÅOffline image data
ïE.g. microscopic grain shape and colour

ï~ days

3



Abnormal event detection
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Disturbance 
processes

D

ÅMany faults and failures can occur in complex processes

ÅLarge variation in normal operating conditions due to 
range of allowable disturbances



Abnormal event detection
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ÅMissed detections can lead to suboptimal performance, 
equipment failure, safety and environmental violations

ÅFalse alarms can lead to unnecessary downtime and loss 
of trust in alarm systems



Abnormal event detection
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ÅUnsupervised learning problem
ïAbundance of one class of data: Normal operating conditions

ÅFault detection
ïFeature extraction

ïData description / support estimation

ÅFault identification
ïTopology extraction

ïSupervised learning model inspection:

ÅVariable importance

ÅPartial dependence



Abnormal event detection
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ÅFeature extraction
ïSensor data correlated

(through mass and energy balances, control instructions)

ïSensor data noisy

ïFeature spacerepresents lower dimensional, noise-free 
information

ïResidual space represents feature extraction model validity



Abnormal event detection
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ÅFeature extraction
ïPrincipal component analysis

Å╣ᶻ ╧╟ᶻ; ╧ ╣ᶻ╟ᶻ╣

ïKernel principal component analysis



Abnormal event detection
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ÅFeature extraction
ïAutoassociative neural networks (NLPCA)
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ÅFeature extraction
ïAutoassociative neural networks (NLPCA)



Abnormal event detection
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ÅData description / support estimation
ïKernel density estimation

ïOne-class support vector machines
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Abnormal event detection

13

ÅData description / support estimation
ïKernel density estimation

ïOne-class support vector machines



Abnormal event detection
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ÅTopology extraction
ï Identification of propagation path of fault

ïTransfer entropy / lagged cross-correlation used to determine 
direction and strength of connections between variables
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Abnormal event detection
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ÅTopology extraction
ï Identification of propagation path of fault
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Abnormal event detection
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ÅResearch approach
ïScarcity of industrial data with faults detected and identified

ïSimulation of complex, dynamic processes with known faults

ïRepository with dynamic models and simulated data

github.com/ProcessMonitoringStellenboschUniversity



ÅOre characteristics
ïMetal content, particle size Ą correlated to process performance

ïCaptured by image data

ÅSoft sensor
ïTrained model for prediction of process performance from 

measured process data

Soft sensors
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GLCM
Wavelet
Textons
Steerable pyramids
Etc.

k-NN
LDA

Ore grade
Particle size
Process state



ÅFlotation grade prediction with convolutional neural 
networks texture features and classification

Soft sensors
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ÅFlotation grade prediction with convolutional neural 
networks texture features and classification

Soft sensors
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Variants 
generated to 
supplement 
data set

Class labels 
used for 
training

Bottleneck 
introduced to 
create lower 
dimensional 
feature space


